Publication

Distributed Signal Processing via Chebyshev Polynomial Approximation

Abstract

Unions of graph multiplier operators are an important class of linear operators for processing signals defined on graphs. We present a novel method to efficiently distribute the application of these operators. The proposed method features approximations of the graph multipliers by shifted Chebyshev polynomials, whose recurrence relations make them readily amenable to distributed computation. We demonstrate how the proposed method can be applied to distributed processing tasks such as smoothing, denoising, inverse filtering, and semi-supervised classification, and show that the communication requirements of the method scale gracefully with the size of the network.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.