Publication

Resolution and Complex Deconvolution in Holographic Microscopy

Abstract

Interest in high resolution imaging techniques has recently multiplied due to their importance in bio-medical research. Quantitative phase measurements by holographic microscopy is an extraordinary tool to gain new understanding of transparent biological samples. The extremely high demand on resolution well beyond the diffraction limit, however, sets new benchmarks for imaging techniques. Digital Holographic Microscopy is an interferometric method providing access to the complex wave front. Its capacity to image amplitude and quantitative phase simultaneously makes it an attractive research tool in many fields of biological research. It is on the verge of becoming an appealing alternative to classical fluorescence microscopy. For intensity-based microscopy, however, super-resolution methods are well established. In this thesis, approaches to unleash resolution for phase imaging techniques are explored. Based on truncated inverse filtering, a theory for deconvolution of complex fields is developed. It is a post-processing method that does not require any additional optics in the holographic microscopy setup. Gain in resolution arises by accessing the object's complex field – containing the information encoded in the phase – and deconvolving it with the characteristic coherent transfer function (CTF). By efficient harvest of a diffraction limited bandpass, complex deconvolution is demonstrated to exceed the coherent resolution limit. A novel method, called a complex point source, serves to characterize the holographic microscopy system. It consists of a coherently illuminated nano-metric hole, located on a conventional microscope slide, most common in bio-microscopy. A thin opaque film is directly evaporated on the slide and the circular sub-wavelength structures are drilled with a focused ion beam. Theoretical as well as practical work on transmission properties of apertures confirms the advantageous signal-to-noise yield of proposed method. More abstractly, the thus gained experimental amplitude point spread function is demonstrated to be suitable for experimental CTF reconstruction. Herefrom, experimental parameters are extracted and introduced into scalar and vectorial Debye theory, called synthetic CTF, adaptable to realistic imaging conditions. Also, it allows to study the role of noise in the context of complex field deconvolution. The resolution power of holographic microscopy systems is systematically examined with pairs of nano-metric apertures separated by sub-resolution pitches. Theory of information content is elaborated depending on different experimental configurations. Resolution extends beyond classical Abbe's limit by introducing spatially a varying phase into the illumination beam of a phase imaging system. In a last step, the novel deconvolution method is generalized to three-dimensional image processing of complex fields. By combining scattering theory and signal processing, the method is demonstrated to yield the reconstruction of the scattering object field under non-design microscope objective imaging conditions. The suggested technique is best suited for an implementation in high-resolution diffraction tomography based on sample and/or illumination rotation.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (35)
Microscopy
Microscopy is the technical field of using microscopes to view objects and areas of objects that cannot be seen with the naked eye (objects that are not within the resolution range of the normal eye). There are three well-known branches of microscopy: optical, electron, and scanning probe microscopy, along with the emerging field of X-ray microscopy. Optical microscopy and electron microscopy involve the diffraction, reflection, or refraction of electromagnetic radiation/electron beams interacting with the specimen, and the collection of the scattered radiation or another signal in order to create an image.
Optical microscope
The optical microscope, also referred to as a light microscope, is a type of microscope that commonly uses visible light and a system of lenses to generate magnified images of small objects. Optical microscopes are the oldest design of microscope and were possibly invented in their present compound form in the 17th century. Basic optical microscopes can be very simple, although many complex designs aim to improve resolution and sample contrast. The object is placed on a stage and may be directly viewed through one or two eyepieces on the microscope.
Super-resolution microscopy
Super-resolution microscopy is a series of techniques in optical microscopy that allow such images to have resolutions higher than those imposed by the diffraction limit, which is due to the diffraction of light. Super-resolution imaging techniques rely on the near-field (photon-tunneling microscopy as well as those that use the Pendry Superlens and near field scanning optical microscopy) or on the far-field.
Show more
Related publications (321)

Subwavelength imaging using a solid-immersion diffractive optical processor

Demetri Psaltis, Carlo Gigli, Niyazi Ulas Dinç, Yang Li

Phase imaging is widely used in biomedical imaging, sensing, and material characterization, among other fields. However, direct imaging of phase objects with subwavelength resolution remains a challenge. Here, we demonstrate subwavelength imaging of phase ...
Springernature2024

Compact and effective photon-resolved image scanning microscope

Giorgio Tortarolo

Fluorescence confocal laser-scanning microscopy (LSM) is one of the most popular tools for life science research. This popularity is expected to grow thanks to single-photon array detectors tailored for LSM. These detectors offer unique single-photon spati ...
Spie-Soc Photo-Optical Instrumentation Engineers2024

Fluorescence microscopy: A statistics-optics perspective

Aleksandra Radenovic

Fundamental properties of light unavoidably impose features on images collected using fluorescence microscopes. Accounting for these features is often critical in quantitatively interpreting microscopy images, especially those gathering information at scal ...
Amer Physical Soc2024
Show more
Related MOOCs (18)
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Microstructure Fabrication Technologies I
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.