Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We investigate multilevel Schwarz domain decomposition preconditioners, to efficiently solve linear systems arising from numerical discretizations of elliptic partial differential equations by the finite element method. In our analysis we deal with unstructured mesh partitions and with subdomain boundaries resulting from using the mesh partitioner. We start from two-level preconditioners with either aggregative or interpolative coarse level components, then we focus on a strategy to increase the number of levels. For all preconditioners, we consider the additive residual update and its multiplicative variants within and between levels. Moreover, we compare the preconditioners behaviour, regarding scalability and rate of convergence. Numerical results are provided for elliptic boundary value problems, including a convection-diffusion problem when suitable stabilization becomes necessary. (C) 2011 Elsevier B.V. All rights reserved.
Annalisa Buffa, Rafael Vazquez Hernandez, Ondine Gabrielle Chanon