**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# What are the Longest Ropes on the Unit Sphere?

Abstract

We consider the variational problem of finding the longest closed curves of given minimal thickness on the unit sphere. After establishing the existence of solutions for any given thickness between 0 and 1, we explicitly construct for each given thickness Theta(n) := sin pi/(2n), n is an element of N, exactly phi(n) solutions, where. is Euler's totient function from number theory. Then we prove that these solutions are unique, and also provide a complete characterisation of sphere filling curves on the unit sphere; that is of those curves whose spherical tubular neighbourhood completely covers the surface area of the unit sphere exactly once. All of these results carry over to open curves as well, as indicated in the last section.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (2)

Number theory

Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics." Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example, rational numbers), or defined as generalizations of the integers (for example, algebraic integers).

Curve

In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight. Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that appeared more than 2000 years ago in Euclid's Elements: "The [curved] line is [...] the first species of quantity, which has only one dimension, namely length, without any width nor depth, and is nothing else than the flow or run of the point which [...