Distribution of periodic torus orbits and Duke's theorem for cubic fields
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We prove that the category of systems of sesquilinear forms over a given hermitian category is equivalent to the category of unimodular 1-hermitian forms over another hermitian category. The sesquilinear forms are not required to be unimodular or defined o ...
Let G be a finite group and let T(G) be the abelian group of equivalence classes of endotrivial kG-modules, where k is an algebraically closed field of characteristic p. We investigate the torsion-free part TF(G) of the group T(G) and look for generators o ...
The effect of the local environment on the evolution of dwarf spheroidal galaxies is poorly understood. We have undertaken a suite of simulations to investigate the tidal impact of the Milky Way on the chemodynamical evolution of dwarf spheroidals that res ...
Let B be a positive quaternion algebra, and let O subset of B be an Eichler order. There is associated, in a natural way, a variety X = X(O) the connected components of which are indexed by the ideal classes of O and are isomorphic to spheres. This variety ...
We track the secondary bifurcations of coherent states in plane Couette flow and show that they undergo a periodic doubling cascade that ends with a crisis bifurcation. We introduce a symbolic dynamics for the orbits and show that the ones that exist fall ...
The mathematical facet of modern crystallography is essentially based on analytical geometry, linear algebra as well as group theory. This study endeavours to approach the geometry and symmetry of crystals using the tools furnished by differential geometry ...
This work is dedicated to the study of Borel equivalence relations acting on Borel fields of CAT(0) metric spaces over a standard probability space. In this new framework we get similar results to some theorems proved recently by S. Adams-W. Ballmann or N. ...
Let K be a field with char(K) ≠ 2. The Witt-Grothendieck ring (K) and the Witt ring W (K) of K are both quotients of the group ring ℤ[𝓖(K)], where 𝓖(K) := K*/(K*)2 is the square class group of K. Since ℤ[𝓖(K)] is integra ...
An equivalence relation on the tangent bundle of a manifold is defined in order to extend a structure (modulated or not) onto it. This extension affords a representation of a structure in any tangent space and that in another tangent space can easily be de ...
We present the general notion of Borel fields of metric spaces and show some properties of such fields. Then we make the study specific to the Borel fields of proper CAT(0) spaces and we show that the standard tools we need behave in a Borel way. We also i ...