**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Algebraic Algorithms for Vector Network Coding

Javad Ebrahimi Boroojeni, Christina Fragouli

*Institute of Electrical and Electronics Engineers, *2011

Journal paper

Journal paper

Abstract

We develop new algebraic algorithms for scalar and vector network coding. In vector network coding, the source multicasts information by transmitting vectors of length L, while intermediate nodes process and combine their incoming packets by multiplying them with L x L coding matrices that play a similar role as coding coefficients in scalar coding. We start our work by extending the algebraic framework developed for multicasting over graphs by Koetter and Medard to include operations over matrices; we build on this generalized framework, to provide a new approach for both scalar and vector code design which attempts to minimize the employed field size and employed vector length, while selecting the coding operations. Our algorithms also lead as a special case to network code designs that employ structured matrices.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related concepts (9)

Algorithm

In mathematics and computer science, an algorithm (ˈælɡərɪðəm) is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algo

Algebraic geometry

Algebraic geometry is a branch of mathematics which classically studies zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly fro

Vector quantization

Vector quantization (VQ) is a classical quantization technique from signal processing that allows the modeling of probability density functions by the distribution of prototype vectors. It was origina

Related publications (3)

Loading

Loading

Loading

Ahlswede et al. in the seminal paper [1] have shown that in data transfer over networks, processing the data at the nodes can significantly improve the throughput. As proved by Li et al. in [2], even with a simple type of operation, namely linear operation, the throughput can still be vastly improved. In [3], it is shown that the multicasting problem over networks can be translated to an algebraic question about a polynomial associated to the network called network polynomial. In this thesis, we start from the algorithm of [3] and extend it in several directions. First, we generalize the framework of [3] to include the case where the messages can also be vectors over some fixed finite field. We also show that in contrast to the original algorithm, ours can be used to reduce the field size for the case of sending finite field elements. In both vector network code algorithm and finite field minimization, we translate the network code design problems into an algebraic problem about network polynomials. Because of the importance of the network polynomials, we investigate more properties of them and we study the relationship between these objects and the topological properties of the network. Then, we extend the result of [3] to the deterministic models for wireless relay networks, a very important class of networks that has been introduced in [4] by Avestimehr, Diggavi and Tse. Finally, for another class of networks, called broadcast networks, we introduce the transfer matrix and using its properties, we show that in the absence of public messages, processing the information at the nodes will not improve the throughput.

Javad Ebrahimi Boroojeni, Christina Fragouli

We develop new algebraic algorithms for scalar and vector network coding. In vector network coding, the source multicasts information by transmitting vectors of length L, while intermediate nodes process and combine their incoming packets by multiplying them with L x L coding matrices that play a similar role as coding c in scalar coding. Our algorithms for scalar network jointly optimize the employed field size while selecting the coding coefficients. Similarly, for vector coding, our algorithms optimize the length L while designing the coding matrices. These algorithms apply both for regular network graphs as well as linear deterministic networks.

2010Javad Ebrahimi Boroojeni, Christina Fragouli

We develop new algebraic algorithms for scalar and vector network coding. In vector network coding, the source multicasts information by transmitting vectors of length L, while intermediate nodes process and combine their incoming packets by multiplying them with L X L coding matrices that play a similar role as coding coefficients in scalar coding. Our algorithms for scalar network jointly optimize the employed field size while selecting the coding coefficients. Similarly, for vector coding, our algorithms optimize the length L while designing the coding matrices. These algorithms apply both for regular network graphs as well as linear deterministic networks.

2010