Point estimationIn statistics, point estimation involves the use of sample data to calculate a single value (known as a point estimate since it identifies a point in some parameter space) which is to serve as a "best guess" or "best estimate" of an unknown population parameter (for example, the population mean). More formally, it is the application of a point estimator to the data to obtain a point estimate. Point estimation can be contrasted with interval estimation: such interval estimates are typically either confidence intervals, in the case of frequentist inference, or credible intervals, in the case of Bayesian inference.
Pattern recognitionPattern recognition is the automated recognition of patterns and regularities in data. While similar, pattern recognition (PR) is not to be confused with pattern machines (PM) which may possess (PR) capabilities but their primary function is to distinguish and create emergent pattern. PR has applications in statistical data analysis, signal processing, , information retrieval, bioinformatics, data compression, computer graphics and machine learning.
SystemA system is a group of interacting or interrelated elements that act according to a set of rules to form a unified whole. A system, surrounded and influenced by its environment, is described by its boundaries, structure and purpose and is expressed in its functioning. Systems are the subjects of study of systems theory and other systems sciences. Systems have several common properties and characteristics, including structure, function(s), behavior and interconnectivity.
Large language modelA large language model (LLM) is a language model characterized by its large size. Their size is enabled by AI accelerators, which are able to process vast amounts of text data, mostly scraped from the Internet. The artificial neural networks which are built can contain from tens of millions and up to billions of weights and are (pre-)trained using self-supervised learning and semi-supervised learning. Transformer architecture contributed to faster training.
Phonemic orthographyA phonemic orthography is an orthography (system for writing a language) in which the graphemes (written symbols) correspond to the phonemes (significant spoken sounds) of the language. Natural languages rarely have perfectly phonemic orthographies; a high degree of grapheme–phoneme correspondence can be expected in orthographies based on alphabetic writing systems, but they differ in how complete this correspondence is.
Lexical resourceIn digital lexicography, natural language processing, and digital humanities, a lexical resource is a language resource consisting of data regarding the lexemes of the lexicon of one or more languages e.g., in the form of a database. Different standards for the machine-readable edition of lexical resources exist, e.g., Lexical Markup Framework (LMF) an ISO standard for encoding lexical resources, comprising an abstract data model and an XML serialization, and OntoLex-Lemon, an RDF vocabulary for publishing lexical resources as knowledge graphs on the web, e.
X-SAMPAThe Extended Speech Assessment Methods Phonetic Alphabet (X-SAMPA) is a variant of SAMPA developed in 1995 by John C. Wells, professor of phonetics at University College London. It is designed to unify the individual language SAMPA alphabets, and extend SAMPA to cover the entire range of characters in the 1993 version of International Phonetic Alphabet (IPA). The result is a SAMPA-inspired remapping of the IPA into 7-bit ASCII. SAMPA was devised as a hack to work around the inability of text encodings to represent IPA symbols.
Bayes estimatorIn estimation theory and decision theory, a Bayes estimator or a Bayes action is an estimator or decision rule that minimizes the posterior expected value of a loss function (i.e., the posterior expected loss). Equivalently, it maximizes the posterior expectation of a utility function. An alternative way of formulating an estimator within Bayesian statistics is maximum a posteriori estimation. Suppose an unknown parameter is known to have a prior distribution .
Interval estimationIn statistics, interval estimation is the use of sample data to estimate an interval of possible values of a parameter of interest. This is in contrast to point estimation, which gives a single value. The most prevalent forms of interval estimation are confidence intervals (a frequentist method) and credible intervals (a Bayesian method); less common forms include likelihood intervals and fiducial intervals.
Poisson distributionIn probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time or space if these events occur with a known constant mean rate and independently of the time since the last event. It is named after French mathematician Siméon Denis Poisson ('pwɑːsɒn; pwasɔ̃). The Poisson distribution can also be used for the number of events in other specified interval types such as distance, area, or volume.