Cross-correlationIn signal processing, cross-correlation is a measure of similarity of two series as a function of the displacement of one relative to the other. This is also known as a sliding dot product or sliding inner-product. It is commonly used for searching a long signal for a shorter, known feature. It has applications in pattern recognition, single particle analysis, electron tomography, averaging, cryptanalysis, and neurophysiology. The cross-correlation is similar in nature to the convolution of two functions.
Stochastic processIn probability theory and related fields, a stochastic (stəˈkæstɪk) or random process is a mathematical object usually defined as a sequence of random variables, where the index of the sequence has the interpretation of time. Stochastic processes are widely used as mathematical models of systems and phenomena that appear to vary in a random manner. Examples include the growth of a bacterial population, an electrical current fluctuating due to thermal noise, or the movement of a gas molecule.
AutocorrelationAutocorrelation, sometimes known as serial correlation in the discrete time case, is the correlation of a signal with a delayed copy of itself as a function of delay. Informally, it is the similarity between observations of a random variable as a function of the time lag between them. The analysis of autocorrelation is a mathematical tool for finding repeating patterns, such as the presence of a periodic signal obscured by noise, or identifying the missing fundamental frequency in a signal implied by its harmonic frequencies.
Noise (electronics)In electronics, noise is an unwanted disturbance in an electrical signal. Noise generated by electronic devices varies greatly as it is produced by several different effects. In particular, noise is inherent in physics and central to thermodynamics. Any conductor with electrical resistance will generate thermal noise inherently. The final elimination of thermal noise in electronics can only be achieved cryogenically, and even then quantum noise would remain inherent. Electronic noise is a common component of noise in signal processing.
Universal wavefunctionThe universal wavefunction (or wave function), introduced by Hugh Everett in his 1973 PhD thesis The Theory of the Universal Wave Function, informs a core concept in the relative state interpretation or many-worlds interpretation of quantum mechanics. It later received investigation from James Hartle and Stephen Hawking in which they derived a specific solution to the Wheeler–deWitt equation to explain the initial conditions of the Big Bang cosmology.
Stochastic calculusStochastic calculus is a branch of mathematics that operates on stochastic processes. It allows a consistent theory of integration to be defined for integrals of stochastic processes with respect to stochastic processes. This field was created and started by the Japanese mathematician Kiyosi Itô during World War II. The best-known stochastic process to which stochastic calculus is applied is the Wiener process (named in honor of Norbert Wiener), which is used for modeling Brownian motion as described by Louis Bachelier in 1900 and by Albert Einstein in 1905 and other physical diffusion processes in space of particles subject to random forces.
Hermite polynomialsIn mathematics, the Hermite polynomials are a classical orthogonal polynomial sequence. The polynomials arise in: signal processing as Hermitian wavelets for wavelet transform analysis probability, such as the Edgeworth series, as well as in connection with Brownian motion; combinatorics, as an example of an Appell sequence, obeying the umbral calculus; numerical analysis as Gaussian quadrature; physics, where they give rise to the eigenstates of the quantum harmonic oscillator; and they also occur in some cases of the heat equation (when the term is present); systems theory in connection with nonlinear operations on Gaussian noise.
Laguerre polynomialsIn mathematics, the Laguerre polynomials, named after Edmond Laguerre (1834–1886), are solutions of Laguerre's differential equation: which is a second-order linear differential equation. This equation has nonsingular solutions only if n is a non-negative integer. Sometimes the name Laguerre polynomials is used for solutions of where n is still a non-negative integer. Then they are also named generalized Laguerre polynomials, as will be done here (alternatively associated Laguerre polynomials or, rarely, Sonine polynomials, after their inventor Nikolay Yakovlevich Sonin).
Kendall rank correlation coefficientIn statistics, the Kendall rank correlation coefficient, commonly referred to as Kendall's τ coefficient (after the Greek letter τ, tau), is a statistic used to measure the ordinal association between two measured quantities. A τ test is a non-parametric hypothesis test for statistical dependence based on the τ coefficient. It is a measure of rank correlation: the similarity of the orderings of the data when ranked by each of the quantities.
3-j symbolIn quantum mechanics, the Wigner 3-j symbols, also called 3-jm symbols, are an alternative to Clebsch–Gordan coefficients for the purpose of adding angular momenta. While the two approaches address exactly the same physical problem, the 3-j symbols do so more symmetrically. The 3-j symbols are given in terms of the Clebsch–Gordan coefficients by The j and m components are angular-momentum quantum numbers, i.e., every j (and every corresponding m) is either a nonnegative integer or half-odd-integer.