Effective Spin Model for the Spin-Liquid Phase of the Hubbard Model on the Triangular Lattice
Related publications (46)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
BaVS3 presents a metal-to-insulator (MI) transition at ambient pressure due to the stabilization of a 2k(F) commensurate charge density wave (CDW) Peierls ground state built on the dz(2) V orbitals. The MI transition vanishes under pressure at a quantum cr ...
The main characteristic of Mott insulators, as compared to band insulators, is to host low-energy spin fluctuations. In addition, Mott insulators often possess orbital degrees of freedom when crystal-field levels are partially filled. While in the majority ...
Inspired by the recent discovery of a new instability towards a chiral phase of the classical Heisenberg model on the kagome lattice, we propose a specific chiral spin liquid that reconciles different, well-established results concerning both the classical ...
We show that spin S Heisenberg spin chains with an additional three-body interaction of the form (Si-1 center dot S-i)(S-i center dot S-i (+) (1)) + H.c. possess fully dimerized ground states if the ratio of the three-body interaction to the bilinear one i ...
The principal aim of this thesis is to gain a better understanding of the competition between magnetic and quadrupolar degrees of freedom on two-dimensional lattices. Recent experimental investigations of the material NiGa2S4 revealed several anomalous pro ...
We consider some classical and frustrated lattice spin models with global O(3) spin symmetry. No general analytical method to find a ground state exists when the spin dependence of the Hamiltonian is more than quadratic (i.e., beyond the Heisenberg model) ...
In this work, we study two examples of frustrated magnetic systems whose degrees of freedom are spins (or pseudo-spins) on two-dimensional lattices. The first part presents the results obtained for the quantum compass model on a square lattice. This model ...
We introduce a minimal model describing the physics of classical two-dimensional (2D) frustrated Heisenberg systems, where spins order in a nonplanar way at T=0. This model, consisting of coupled trihedra (or Ising-RP3 model), encompasses Ising (chiral) de ...
Motivated by the recent discovery of a spin-liquid phase for the Hubbard model on the honeycomb lattice at half-filling (Meng et al 2010 Nature 88 487), we apply both perturbative and non-perturbative techniques to derive effective spin Hamiltonians descri ...
We study the T=0 magnetization of frustrated two-leg spin ladders with arbitrary value of the spin S. In the strong-rung limit, we use degenerate perturbation theory to prove that frustration leads to magnetization plateaus at fractional values of the magn ...