**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# On The Stochastic Modeling Of Rigid Body Systems With Application To Polymer Dynamics

Abstract

The stochastic equations of motion for a system of interacting rigid bodies in a solvent are formulated and studied. Three-dimensional bodies of arbitrary shape, with arbitrary couplings between translational and rotational degrees of freedom, as arise in coarse-grained models of polymers, are considered. Beginning from an Euler-Langevin form of the equations, two different, properly invariant, Hamilton-Langevin forms are derived and studied together with various associated measures. Under different conditions depending on the choice of rotational coordinates, the canonical measure is shown to be a stationary solution of an associated Fokker-Planck equation and to always factorize into independent measures on configuration and velocity spaces. Explicit expressions are given for these measures, along with a certain Jacobian factor associated with the three-dimensional rotation group. When specialized to a fully coupled, quadratic model of a stiff polymer such as DNA, our results yield an explicit characterization of the complete set of model parameters.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (7)

Parameter

A parameter (), generally, is any characteristic that can help in defining or classifying a particular system (meaning an event, project, object, situation, etc.). That is, a parameter is an element of a system that is useful, or critical, when identifying the system, or when evaluating its performance, status, condition, etc. Parameter has more specific meanings within various disciplines, including mathematics, computer programming, engineering, statistics, logic, linguistics, and electronic musical composition.

Fokker–Planck equation

In statistical mechanics and information theory, the Fokker–Planck equation is a partial differential equation that describes the time evolution of the probability density function of the velocity of a particle under the influence of drag forces and random forces, as in Brownian motion. The equation can be generalized to other observables as well. The Fokker-Planck equation has multiple applications in information theory, graph theory, data science, finance, economics etc.

Equation

In mathematics, an equation is a mathematical formula that expresses the equality of two expressions, by connecting them with the equals sign . The word equation and its cognates in other languages may have subtly different meanings; for example, in French an équation is defined as containing one or more variables, while in English, any well-formed formula consisting of two expressions related with an equals sign is an equation. Solving an equation containing variables consists of determining which values of the variables make the equality true.