High-resolution cell outline segmentation and tracking from phase-contrast microscopy images
Related publications (81)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Microscopy is of high interest for biology since it allows imaging features that are too small to
be seen with naked eyes. However, cells are mostly transparent to visible and infrared light
which makes it difficult to see with a traditional microscope. To ...
Structural and functional imaging of cells, tissues and organisms is crucial for understanding biomedical processes. Fluorescence microscopy is an established tool and has contributed to many discoveries in the life sciences. This technique provides molecu ...
Lensless quantitative phase imaging is of high interest for obtaining a large field of view (FOV), typically the size of the camera chip, to observe biological cell material with high contrast. It has the potential to be widely spread due to its inherent s ...
We introduce a variational phase retrieval algorithm for the imaging of transparent objects. Our formalism is based on the transport-of-intensity equation (TIE), which relates the phase of an optical field to the variation of its intensity along the direct ...
Quantitative phase imaging (QPI) has emerged as a valuable method for investigating cells and tissues. QPI operates on unlabelled specimens and, as such, is complementary to established fluorescence microscopy, exhibiting lower phototoxicity and no photobl ...
Novel fundamental research results provided new techniques going beyond the diffraction limit. These recent advances known as super-resolution microscopy have been awarded by the Nobel Prize as they promise new discoveries in biology and live sciences. All ...
A system for subpixel resolution imaging of an amplitude and quantitative phase image, the system including a waveguide having a top plane, a bottom plane, and two sides, an array of light sources emitting first befit beams from one side of the two sides o ...
We introduce a new model of parametric contours defined in a continuous fashion. Our curve model relies on Hermite spline interpolation and can easily generate curves with sharp discontinuities; it also grants direct access to the tangent at each location. ...
Microscopy imaging, including fluorescence microscopy and electron microscopy, has a prominent role in life science and medical research. During the past two decades, biological imaging has undergone a revolution by way of the development of new microscopy ...
IEEE2016
, , , , ,
Quantitative phase microscopy (QPM) has recently emerged as a powerful label-free technique in the field of living cell imaging allowing to non-invasively measure with a nanometric axial sensitivity cell structure and dynamics. Since the phase retardation ...