Stress, genotype and norepinephrine in the prediction of mouse behavior using reinforcement learning
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This article analyzes the simple Rescorla-Wagner learning rule from the vantage point of least squares learning theory. In particular, it suggests how measures of risk, such as prediction risk, can be used to adjust the learning constant in reinforcement l ...
This study aims to explore the possibility of using machine learning techniques to build predictive models of performance in collaborative induction tasks. More specifically, we explored how signal-level data, like eye-gaze data and raw speech may be used ...
International Society of the Learning Sciences2009
Stress and genetic background regulate different aspects of behavioral learning through the action of stress hormones and neuromodulators. In reinforcement learning (RL) models, meta-parameters such as learning rate, future reward discount factor, and expl ...
This article analyzes the simple Rescorla-Wagner learning rule from the vantage point of least squares learning theory. In particular, it suggests how measures of risk, such as prediction risk, can be used to adjust the learning constant in reinforcement l ...
Children seem to acquire new know-how in a continuous and open-ended manner. In this paper, we hypothesize that an intrinsic motivation to progress in learning is at the origins of the remarkable structure of children’s developmental trajectories. In this ...
Our research focuses on the behavioral animation of virtual humans who are capable of taking actions by themselves. We deal more specifically with reinforcement learning methodologies, which integrate in an original way the RL agent and the autonomous virt ...