Probability axiomsThe Kolmogorov axioms are the foundations of probability theory introduced by Russian mathematician Andrey Kolmogorov in 1933. These axioms remain central and have direct contributions to mathematics, the physical sciences, and real-world probability cases. An alternative approach to formalising probability, favoured by some Bayesians, is given by Cox's theorem. The assumptions as to setting up the axioms can be summarised as follows: Let be a measure space with being the probability of some event , and .
Partial differential equationIn mathematics, a partial differential equation (PDE) is an equation which computes a function between various partial derivatives of a multivariable function. The function is often thought of as an "unknown" to be solved for, similar to how x is thought of as an unknown number to be solved for in an algebraic equation like x2 − 3x + 2 = 0. However, it is usually impossible to write down explicit formulas for solutions of partial differential equations.
Data terminal equipmentData terminal equipment (DTE) is an end instrument that converts user information into signals or reconverts received signals. It is also called data processing terminal equipment or tail circuit. A DTE device communicates with the data circuit-terminating equipment (DCE), such as a modem. The DTE/DCE classification was introduced by IBM. A DTE is the functional unit of a data station (station, terminal) that serves as a data source or a data sink and provides for the data communication control function to be performed in accordance with the link protocol.
VLANA virtual local area network (VLAN) is any broadcast domain that is partitioned and isolated in a computer network at the data link layer (OSI layer 2). In this context, virtual, refers to a physical object recreated and altered by additional logic, within the local area network. VLANs work by applying tags to network frames and handling these tags in networking systems – creating the appearance and functionality of network traffic that is physically on a single network but acts as if it is split between separate networks.
IdentifiabilityIn statistics, identifiability is a property which a model must satisfy for precise inference to be possible. A model is identifiable if it is theoretically possible to learn the true values of this model's underlying parameters after obtaining an infinite number of observations from it. Mathematically, this is equivalent to saying that different values of the parameters must generate different probability distributions of the observable variables.
Quartic equationIn mathematics, a quartic equation is one which can be expressed as a quartic function equaling zero. The general form of a quartic equation is where a ≠ 0. The quartic is the highest order polynomial equation that can be solved by radicals in the general case (i.e., one in which the coefficients can take any value). Lodovico Ferrari is attributed with the discovery of the solution to the quartic in 1540, but since this solution, like all algebraic solutions of the quartic, requires the solution of a cubic to be found, it could not be published immediately.
Overdetermined systemIn mathematics, a system of equations is considered overdetermined if there are more equations than unknowns. An overdetermined system is almost always inconsistent (it has no solution) when constructed with random coefficients. However, an overdetermined system will have solutions in some cases, for example if some equation occurs several times in the system, or if some equations are linear combinations of the others. The terminology can be described in terms of the concept of constraint counting.
Derivation (differential algebra)In mathematics, a derivation is a function on an algebra which generalizes certain features of the derivative operator. Specifically, given an algebra A over a ring or a field K, a K-derivation is a K-linear map D : A → A that satisfies Leibniz's law: More generally, if M is an A-bimodule, a K-linear map D : A → M that satisfies the Leibniz law is also called a derivation. The collection of all K-derivations of A to itself is denoted by DerK(A). The collection of K-derivations of A into an A-module M is denoted by DerK(A, M).