Semi-supervised dimensionality reduction for analyzing high-dimensional data with constraints
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In generalized linear estimation (GLE) problems, we seek to estimate a signal that is observed through a linear transform followed by a component-wise, possibly nonlinear and noisy, channel. In the Bayesian optimal setting, generalized approximate message ...
In the context of next-generation radio interferometers, we are facing a big challenge of how to economically process data. The classical dimensionality reduction technique, averaging visibilities on time, may dilute fast radio transients (FRT). We propose ...
In the Internet of Things (IoT), the large volume of data generated by sensors poses significant computational challenges in resource-constrained environments. Most existing machine learning algorithms are unable to train a proper model using a significant ...
Gathering labeled data in educational data mining (EDM) is a time and cost intensive task. However, the amount of available training data directly influences the quality of predictive models. Unlabeled data, on the other hand, is readily available in high ...
Next-generation radio-interferometers face a computing challenge with respect to the imaging techniques that can be applied in the big data setting in which they are designed. Dimensionality reduction can thus provide essential savings of computing resourc ...
At initialization, artificial neural networks (ANNs) are equivalent to Gaussian processes in the infinite-width limit [12, 9], thus connecting them to kernel methods. We prove that the evolution of an ANN during training can also be described by a kernel: ...
In many signal processing, machine learning and computer vision applications, one often has to deal with high dimensional and big datasets such as images, videos, web content, etc. The data can come in various forms, such as univariate or multivariate time ...
In this paper, we propose an asymptotically stable joint-space dynamical system that captures desired behaviors in joint-space while stably converging towards a task-space attractor. To encode joint-space behaviors while meeting the stability criteria, the ...
The amount of data that we produce and consume is larger than it has been at any point in the history of mankind, and it keeps growing exponentially. All this information, gathered in overwhelming volumes, often comes with two problematic characteristics: ...
We develop approximate inference and learning methods for facilitating the use of probabilistic modeling techniques motivated by applications in two different areas. First, we consider the ill-posed inverse problem of recovering an image from an underdeter ...