Fast Hand Gesture Recognition based on Saliency Maps: An Application to Interactive Robotic Marionette Playing
Related publications (40)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We present a novel, biologically inspired, approach to an efficient allocation of visual resources for humanoid robots in a form of a motor-primed visual attentional landscape. The attentional landscape is a more general, dynamic and a more complex concept ...
Object classification and detection aim at recognizing and localizing objects in real-world images. They are fundamental computer vision problems and a prerequisite for full scene understanding. Their difficulty lies in the large number of possible object ...
Programme doctoral en Informatique, Communications et Information2013
In this work a new method for automatic image classification is proposed. It relies on a compact representation of images using sets of sparse binary features. This work first evaluates the Fast Retina Keypoint binary descriptor and proposes imp ...
We present a method for the unsupervised segmentation of textured images using Potts functionals, which are a piecewise-constant variant of the Mumford and Shah functionals. We propose a minimization strategy based on the alternating direction method of mu ...
In this paper, we address the problem of the recognition of isolated, complex, dynamic hand gestures. The goal of this paper is to provide an empirical comparison of two state-of-the-art techniques for temporal event modeling combined with specific feature ...
In this paper we apply boosting to learn complex non-linear local visual feature representations, drawing inspiration from its successful application to visual object detection. The main goal of local feature descriptors is to distinctively repre- sent a s ...
Visual attention models mimic the ability of a visual system, to detect potentially relevant parts of a scene. This process of attentional selection is a prerequisite for higher level tasks such as object recognition. Given the high relevance of temporal a ...
Ultra high definition (UHD) TV is rapidly replacing high definition (HD) TV but little is known of its effects on human visual attention. However, a clear understanding of this effect is important, since accurate models, evaluation methodologies, and metri ...
Visual behavior recognition is currently a highly active research area. This is due both to the scientific challenge posed by the complexity of the task, and to the growing interest in its applications, such as automated visual surveillance, human-computer ...
The focus of this paper is on the recognition of single object behavior from monocular image sequences. The general literature trend is to perform behavior recognition separately after an initial phase of feature/attribute extraction. We propose a framewor ...