Publication

Interaction of large scale flow structures with gyrokinetic turbulence

Abstract

Shear flows have a profound influence on turbulence-driven transport in tokamaks. The introduction of arbitrary initial flow profiles into the code ORB5 [Jolliet et al., Comput. Phys. Commun. 177, 409 (2007)] allows the convenient study of how flows on all length scales both influence transport levels and self-consistently evolve. A formulation is presented which preserves the canonical structure of the background particle distribution when either toroidal or poloidal flows are introduced. Turbulence suppression is possible above a certain shearing rate magnitude for homogeneous shear flows, and little evolution of the shearing rate is seen. However, when a flow with a zone boundary, where the shearing rate reverses at mid-radius, is introduced, the shear flow evolves substantially during the simulation. ExB shear flows with a zone boundary of a positive sign decay to a saturation amplitude, consistent with the well known saturation of turbulently generated zonal flows. Unlike the E B flow, the parallel flows relax diffusively.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.