Summary
In fluid dynamics, shear flow is the flow induced by a force in a fluid. In solid mechanics, shear flow is the shear stress over a distance in a thin-walled structure. For thin-walled profiles, such as that through a beam or semi-monocoque structure, the shear stress distribution through the thickness can be neglected. Furthermore, there is no shear stress in the direction normal to the wall, only parallel. In these instances, it can be useful to express internal shear stress as shear flow, which is found as the shear stress multiplied by the thickness of the section. An equivalent definition for shear flow is the shear force V per unit length of the perimeter around a thin-walled section. Shear flow has the dimensions of force per unit of length. This corresponds to units of newtons per meter in the SI system and pound-force per foot in the US. When a transverse force is applied to a beam, the result is variation in bending normal stresses along the length of the beam. This variation causes a horizontal shear stress within the beam that varies with distance from the neutral axis in the beam. The concept of complementary shear then dictates that a shear stress also exists across the cross section of the beam, in the direction of the original transverse force. As described above, in thin-walled structures, the variation along the thickness of the member can be neglected, so the shear stress across the cross section of a beam that is composed of thin-walled elements can be examined as shear flow, or the shear stress multiplied by the thickness of the element. The concept of shear flow is particularly useful when analyzing semi-monocoque structures, which can be idealized using the skin-stringer model. In this model, the longitudinal members, or stringers, carry only axial stress, while the skin or web resists the externally applied torsion and shear force. In this case, since the skin is a thin-walled structure, the internal shear stresses in the skin can be represented as shear flow.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.