**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Unaligned Rebound Attack: Application on Keccak

Abstract

We analyze the internal permutations of Keccak, one of the NIST SHA-3 competition finalists, in regard to differential properties. By carefully studying the elements composing those permutations, we are able to derive most of the best known differential paths for up to 5 rounds. We use these differential paths in a rebound attack setting and adapt this powerful freedom degrees utilization in order to derive distinguishers for up to 8 rounds of the internal permutations of the submitted version of Keccak. The complexity of the 8 round distinguisher is $2^{491.47}$. Our results have been implemented and verified experimentally on a small version of Keccak. This is currently the best known differential attack against the internal permutations of Keccak.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (1)

Warm-up for EPFL

Warmup EPFL est destiné aux nouvelles étudiantes et étudiants de l'EPFL.

Related publications (34)

Related concepts (23)

Ordinary differential equation

In mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable. As with other DE, its unknown(s) consists of one (or more) function(s) and involves the derivatives of those functions. The term "ordinary" is used in contrast with partial differential equations which may be with respect to one independent variable. A linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form where a_0(x), .

Differential geometry

Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Lobachevsky.

Differential equation

In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two. Such relations are common; therefore, differential equations play a prominent role in many disciplines including engineering, physics, economics, and biology.

Fabio Nobile, Eleonora Musharbash, Eva Vidlicková

In this paper we propose a dynamical low-rank strategy for the approximation of second order wave equations with random parameters. The governing equation is rewritten in Hamiltonian form and the approximate solution is expanded over a set of 2S dynamical ...

2020, ,

We propose a new formulation to non-rigid structure-from-motion that only requires the deforming surface to preserve its differential structure. This is a much weaker assumption than the traditional ones of isometry or conformality. We show that it is neve ...

Fabio Nobile, Sundar Subramaniam Ganesh

In this work, we tackle the problem of minimising the Conditional-Value-at-Risk (CVaR) of output quantities of complex differential models with random input data, using gradient-based approaches in combination with the Multi-Level Monte Carlo (MLMC) method ...

2022