Publication

State-resolved spectroscopy of high vibrational levels of water up to the dissociative continuum

Abstract

We summarize here our experimental studies of the high rovibrational energy levels of water. The use of double-resonance vibrational overtone excitation followed by energy-selective photofragmentation and laser-induced fluorescence detection of OH fragments allowed us to measure previously inaccessible rovibrational energies above the seventh OH-stretch overtone. Extension of the experimental approach to triple-resonance excitation provides access to rovibrational levels via transitions with significant transition dipole moments (mainly OH-stretch overtones) up to the dissociation threshold of the O–H bond. A collisionally assisted excitation scheme enables us to probe vibrations that are not readily accessible via pure laser excitation. Observation of the continuous absorption onset yields a precise value for the O–H bond dissociation threshold, 41 145.94 ± 0.15 cm−1. Finally, we detect long-lived resonances as sharp peaks in spectra above the dissociation threshold.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.