Breaking Down the Problem: Optical Transitions, Electronic Structure, and Photoconductivity in Conjugated Polymer PCDTBT and in Its Separate Building Blocks
Related publications (36)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
During the past five years, we have developed in our laboratory a new type of solar cell that is based on a photoelectrochemical process. The light absorption is performed by a monolayer of dye (i.e., a Ruthenium complex) that is adsorbed chemically at the ...
Although in principle very promising, photovoltaic technology has so far failed to deliver robust high efficiency modules at affordable prices. Despite considerable research, high efficiency silicon based cells remain expensive, while the more recent organ ...
We report on the effect of substituting the two tetrabutyl ammonium counter ions of the standard N719 dye by sodium ions on the performance and stability of dye-sensitized solar cells (DSCs). The disodium analogue of N719 in conjunction with a non-volatile ...
The dye solar cell, is a novel photoelectrochemical solar cell presenting unique advantages, as the use of low cost materials and the potential simplicity of manufacturing. However, a liquid electrolyte is actually required for the transport of the photoge ...
Colloidal quantum dot (CQD) photovoltaics combine low-cost solution processability with quantum size-effect tunability to match absorption with the solar spectrum. Rapid recent advances in CQD photovoltaics have led to impressive 3.6% AM1.5 solar power con ...
Tandem solar cells using different bandgap absorbers allow efficient photovoltaic conversion in a wide range of the solar spectrum. The optical gaps of the dye-sensitized solar cell and the Cu(In,Ga)Se2 solar cell are ideal for application in double-junctio ...