Photoinduced Bimolecular Electron Transfer Investigated by Femtosecond Time-Resolved Infrared Spectroscopy
Related publications (39)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this thesis, we exploited optical and X-ray pump-probe methods in a synergistic approach to study the interplay of the electronic, spin and structural degrees of freedom in two class of complex systems relevant for solar energy conversion applications: ...
Investigating molecular excitations with femtosecond time resolution is of pivotal importance to understand the out-of-equilibrium processes taking place in molecular systems upon light absorption. The photochemistry of solvated species is heavily determin ...
Two-dimensional Fourier transform spectroscopy is a promising technique to study ultrafast molecular dynamics. Similar to transient absorption spectroscopy, a more complete picture of the dynamics requires broadband laser pulses to observe transient change ...
Unraveling the interplay between electronic- and vibrational degrees of freedom on the earliest time scales of physical, chemical and biological processes is crucial to gaining insight into the mechanisms that govern the world around us, since it is during ...
The ultrafast nuclear dynamics of the acetylene cation C2H2+ following photoionization of the neutral molecule is investigated using an extreme-ultraviolet pump/infrared probe setup. The observed modulation of the C2H+ fragment ion yield with pump-probe de ...
The motion of atoms is at the heart of any chemical or structural transformation in molecules and materials. Upon activation of this motion by an external source, several (usually many) vibrational modes can be coherently coupled, thus facilitating the che ...
The recent development of ultrafast extreme ultraviolet (XUV) coherent light sources bears great potential for a better understanding of the structure and dynamics of matter. Promising routes are advanced coherent control and nonlinear spectroscopy schemes ...
Helium nanodroplets are liquid, finite size, nanoscale helium clusters that have been employed since the 1990s as a matrix for high-resolution spectroscopy of molecules. Spectroscopic studies of ionic species inside helium droplets were not however realise ...
Quantum state resolved reactivity measurements probe the role of vibrational symmetry on the vibrational activation of the dissociative chemisorption of CH4 on Ni(111). IR-IR double resonance excitation in a molecular beam was used to prepare CH4 in three ...
We introduce a nonequilibrium molecular dynamics simulation approach, based on the generalized Langevin equation, to study vibrational energy relaxation in pump probe spectroscopy. A colored noise thermostat is used to selectively excite a set of vibration ...