Ultra-low power (ULP) biomedical implants and sensor nodes typically require small memories of a few kb, while previous work on reliable subthreshold (sub-Vt) memories targets several hundreds of kb. Standard-cell based memories (SCMs) are a straightforward approach to realize robust sub-Vt storage arrays and fill the gap of missing sub-Vt memory compilers. This paper presents an ultra-low-leakage 4kb SCM manufactured in 65nm CMOS technology. To minimize leakage power during standby, a single custom-designed standard-cell (D-latch with 3-state output buffer) addressing all major leakage contributors of SCMs is seamlessly integrated into the fully automated SCM compilation flow. Silicon measurements of a 4kb SCM indicate a leakage power of 500fW per stored bit (at a data-retention voltage of 220mV) and a total energy of 14fJ per accessed bit (at energy-minimum voltage of 500mV), corresponding to the lowest values in 65nm CMOS reported to date.
Andras Kis, Guilherme Migliato Marega
David Atienza Alonso, Giovanni Ansaloni, Alexandre Sébastien Julien Levisse, Marco Antonio Rios, Flavio Ponzina