Publication

Quantum fluctuations of one-dimensional free fermions and Fisher-Hartwig formula for Toeplitz determinants

2011
Journal paper
Abstract

We revisit the problem of finding the probability distribution of a fermionic number of one-dimensional spinless free fermions on a segment of a given length. The generating function for this probability distribution can be expressed as a determinant of a Toeplitz matrix. We use the recently proven generalized Fisher-Hartwig conjecture on the asymptotic behavior of such determinants to find the generating function for the full counting statistics of fermions on a line segment. Unlike the method of bosonization, the Fisher-Hartwig formula correctly takes into account the discreteness of charge. Furthermore, we numerically check the precision of the generalized Fisher-Hartwig formula, find that it has a higher precision than rigorously proven so far and conjecture the form of the next-order correction to the existing formula.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.