Grassmann numberIn mathematical physics, a Grassmann number, named after Hermann Grassmann (also called an anticommuting number or supernumber), is an element of the exterior algebra over the complex numbers. The special case of a 1-dimensional algebra is known as a dual number. Grassmann numbers saw an early use in physics to express a path integral representation for fermionic fields, although they are now widely used as a foundation for superspace, on which supersymmetry is constructed.
Asymptotic freedomIn quantum field theory, asymptotic freedom is a property of some gauge theories that causes interactions between particles to become asymptotically weaker as the energy scale increases and the corresponding length scale decreases. (Alternatively, and perhaps contrarily, in applying an S-matrix, asymptotically free refers to free particles states in the distant past or the distant future.) Asymptotic freedom is a feature of quantum chromodynamics (QCD), the quantum field theory of the strong interaction between quarks and gluons, the fundamental constituents of nuclear matter.
Dirac fermionIn physics, a Dirac fermion is a spin-1⁄2 particle (a fermion) which is different from its antiparticle. A vast majority of fermions fall under this category. In particle physics, all fermions in the standard model have distinct antiparticles (perhaps excepting neutrinos) and hence are Dirac fermions. They are named after Paul Dirac, and can be modeled with the Dirac equation. A Dirac fermion is equivalent to two Weyl fermions. The counterpart to a Dirac fermion is a Majorana fermion, a particle that must be its own antiparticle.
Geometrization conjectureIn mathematics, Thurston's geometrization conjecture states that each of certain three-dimensional topological spaces has a unique geometric structure that can be associated with it. It is an analogue of the uniformization theorem for two-dimensional surfaces, which states that every simply connected Riemann surface can be given one of three geometries (Euclidean, spherical, or hyperbolic). In three dimensions, it is not always possible to assign a single geometry to a whole topological space.
SuperspaceSuperspace is the coordinate space of a theory exhibiting supersymmetry. In such a formulation, along with ordinary space dimensions x, y, z, ..., there are also "anticommuting" dimensions whose coordinates are labeled in Grassmann numbers rather than real numbers. The ordinary space dimensions correspond to bosonic degrees of freedom, the anticommuting dimensions to fermionic degrees of freedom. The word "superspace" was first used by John Wheeler in an unrelated sense to describe the configuration space of general relativity; for example, this usage may be seen in his 1973 textbook Gravitation.
Line–line intersectionIn Euclidean geometry, the intersection of a line and a line can be the empty set, a point, or another line. Distinguishing these cases and finding the intersection have uses, for example, in computer graphics, motion planning, and collision detection. In three-dimensional Euclidean geometry, if two lines are not in the same plane, they have no point of intersection and are called skew lines.
AsymptoteIn analytic geometry, an asymptote (ˈæsɪmptoʊt) of a curve is a line such that the distance between the curve and the line approaches zero as one or both of the x or y coordinates tends to infinity. In projective geometry and related contexts, an asymptote of a curve is a line which is tangent to the curve at a point at infinity. The word asymptote is derived from the Greek ἀσύμπτωτος (asumptōtos) which means "not falling together", from ἀ priv. + σύν "together" + πτωτ-ός "fallen".
Supersymmetry algebraIn theoretical physics, a supersymmetry algebra (or SUSY algebra) is a mathematical formalism for describing the relation between bosons and fermions. The supersymmetry algebra contains not only the Poincaré algebra and a compact subalgebra of internal symmetries, but also contains some fermionic supercharges, transforming as a sum of N real spinor representations of the Poincaré group. Such symmetries are allowed by the Haag–Łopuszański–Sohnius theorem. When N>1 the algebra is said to have extended supersymmetry.
Dual numberIn algebra, the dual numbers are a hypercomplex number system first introduced in the 19th century. They are expressions of the form a + bε, where a and b are real numbers, and ε is a symbol taken to satisfy with . Dual numbers can be added component-wise, and multiplied by the formula which follows from the property ε^2 = 0 and the fact that multiplication is a bilinear operation. The dual numbers form a commutative algebra of dimension two over the reals, and also an Artinian local ring.
Official statisticsOfficial statistics are statistics published by government agencies or other public bodies such as international organizations as a public good. They provide quantitative or qualitative information on all major areas of citizens' lives, such as economic and social development, living conditions, health, education, and the environment. During the 15th and 16th centuries, statistics were a method for counting and listing populations and State resources.