Accurate and Efficient Linear Structure Segmentation by Leveraging Ad Hoc Features with Learned Filters
Related publications (39)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Our brain continuously self-organizes to construct and maintain an internal representation of the world based on the information arriving through sensory stimuli. Remarkably, cortical areas related to different sensory modalities appear to share the same f ...
Learning filters to produce sparse image representations in terms of overcomplete dictionaries has emerged as a powerful way to create image features for many different purposes. Unfortunately, these filters are usually both numerous and non-separable, mak ...
Segmenting images is a significant challenge that has drawn a lot of attention from different fields of artificial intelligence and has many practical applications. One such challenge addressed in this thesis is the segmentation of electron microscope (EM) ...
Reinforcement learning in neural networks requires a mechanism for exploring new network states in response to a single, nonspecific reward signal. Existing models have introduced synaptic or neuronal noise to drive this exploration. However, those types o ...
Automatic recognition of gestures using computer vision is important for many real-world applications such as sign language recognition and human-robot interaction (HRI). Our goal is a real-time hand gesture-based HRI interface for mobile robots. We use a ...
The main challenge of new information technologies is to retrieve intelligible information from the large volume of digital data gathered every day. Among the variety of existing data sources, the satellites continuously observing the surface of the Earth ...
Learned image features can provide great accuracy in many Computer Vision tasks. However, when the convolution filters used to learn image features are numerous and not separable, feature extraction becomes computationally de- manding and impractical to us ...
Learned image features can provide great accuracy in many Computer Vision tasks. However, when the convolution filters used to learn image features are numerous and not separable, feature extraction becomes computationally demanding and impractical to use ...
We present a new approach for the automated segmentation of synapses in image stacks acquired by Electron Microscopy (EM) that relies on image features specifically designed to take spatial context into account. These features are used to train a classifie ...
Institute of Electrical and Electronics Engineers2013