Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Central Pattern Generators (CPGs) are becoming a popular model for the control of locomotion of legged robots. Biological CPGs are neural networks responsible for the generation of rhythmic movements, especially locomotion. In robotics, a systematic way of ...
In this paper, we review half a century of research on the design of systems displaying (physical) self-assembly of macroscopic components. We report on the experience gained in the study of 22 such systems, exhibiting components ranging from passive mecha ...
Legged robots have gained an increased attention these past decades since they offer a promising technology for many applications in unstructured environments where the use of wheeled robots is clearly limited. Such applications include exploration and res ...
This article addresses the problem of how modular robotics systems, i.e. systems composed of multiple modules that can be configured into different robotic structures, can learn to locomote. In particular, we tackle the problems of online learning, that is ...
An important problem in the control of locomotion of robots with multiple degrees of freedom (e.g., biomimetic robots) is to adapt the locomotor patterns to the properties of the environment. This article addresses this problem for the locomotion of an amp ...
This article presents a control architecture for controlling the locomotion of an amphibious snake/lamprey robot capable of swimming and serpentine locomotion. The control architecture is based on a central pattern generator (CPG) model inspired from the n ...
An important goal of collective robotics is the design of control systems that allow groups of robots to accomplish common tasks by coordinating without centralized control. In this paper, we study how a group of physically assembled robots can display coh ...
In this thesis, we present a dynamical systems approach to adaptive controllers for locomotion control. The approach is based on a rigorous mathematical framework using nonlinear dynamical systems and is inspired by theories of self-organization. Nonlinear ...
Online trajectory generation for robots with multiple degrees of freedom is still a difficult and unsolved problem, in particular for non-steady state locomotion, that is, when the robot has to move in a complex environment with continuous variations of th ...
Cable-operated manipulators, also termed cable robots, possess a number of unique properties which make them suitable for tasks involving high payloads, large workspaces, and interacting with dangerous materials. But the fact that cables can only pull the ...