Publication

Bis(pyrazol-1-yl)methane as Non-Chromophoric Ancillary Ligand for Charged Bis-Cyclometalated Iridium(III) Complexes

Abstract

New charged cyclometalated iridium(III) complexes Ir(ppy)2(L) [ppy = 2-phenylpyridine; L = bis(pyrazol-1-yl)methane (for 1); L = bis(3,5-dimethylpyrazol-1-yl)methane (for 2)] were synthesized and their electrochemical and photophysical properties studied. These complexes with non-p-electron-conjugated ancillary chelates exhibit significantly blueshifted emission relative to those of commonly used derivatives with NN ancillary ligands such as bipyridine or phenanthroline. Both X-ray and theoretical analysis based on time-dependent density functional theory (TD-DFT) reveal that the binding of Ir to the bis(pyrazol-1-yl)methane ancillary ligand is much weaker than that to the phenylpyridine main ligand; the effect is enhanced in the excited state. As a result, the ancillary ligand does not participate in low-energy excitations and triplet emission, and the electronic transitions are concentrated on the main chromophoric ligands. The blueshift feature is attributed to emission originating from the main cyclometalated ligands, in contrast to emitters with the NN chromophoric ancillary ligand. In addition, complex 2 exhibits a one order of magnitude higher non-radiative decay rate than complex 1, which is attributed to the steric hindrance of the methyl groups that leads to a more loosely bound ancillary ligand.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.