International Congress of MathematiciansThe International Congress of Mathematicians (ICM) is the largest conference for the topic of mathematics. It meets once every four years, hosted by the International Mathematical Union (IMU). The Fields Medals, the IMU Abacus Medal (known before 2022 as the Nevanlinna Prize), the Gauss Prize, and the Chern Medal are awarded during the congress's opening ceremony. Each congress is memorialized by a printed set of Proceedings recording academic papers based on invited talks intended to be relevant to current topics of general interest.
Kerala school of astronomy and mathematicsThe Kerala school of astronomy and mathematics or the Kerala school was a school of mathematics and astronomy founded by Madhava of Sangamagrama in Tirur, Malappuram, Kerala, India, which included among its members: Parameshvara, Neelakanta Somayaji, Jyeshtadeva, Achyuta Pisharati, Melpathur Narayana Bhattathiri and Achyuta Panikkar. The school flourished between the 14th and 16th centuries and its original discoveries seem to have ended with Narayana Bhattathiri (1559–1632).
Indeterminate formIn calculus and other branches of mathematical analysis, when the limit of the sum, difference, product, quotient or power of two functions is taken, it may often be possible to simply add, subtract, multiply, divide or exponentiate the corresponding limits of these two functions respectively. However, there are occasions where it is unclear what the sum, difference, product or power of these two limits ought to be. For example, it is unclear what the following expressions ought to evaluate to: These seven expressions are known as indeterminate forms.
Work–life interfaceWork–life interface is the intersection of work and personal life. There are many aspects of one's personal life that can intersect with work, including family, leisure, and health. Work–life interface is bidirectional; for instance, work can interfere with private life, and private life can interfere with work. This interface can be adverse in nature (e.g., work–life conflict) or can be beneficial (e.g., work–life enrichment) in nature. Recent research has shown that the work–life interface has become more boundary-less, especially for technology-enabled workers.
Diophantine equationIn mathematics, a Diophantine equation is an equation, typically a polynomial equation in two or more unknowns with integer coefficients, such that the only solutions of interest are the integer ones. A linear Diophantine equation equates to a constant the sum of two or more monomials, each of degree one. An exponential Diophantine equation is one in which unknowns can appear in exponents. Diophantine problems have fewer equations than unknowns and involve finding integers that solve simultaneously all equations.
Elliptic integralIn integral calculus, an elliptic integral is one of a number of related functions defined as the value of certain integrals, which were first studied by Giulio Fagnano and Leonhard Euler (1750). Their name originates from their originally arising in connection with the problem of finding the arc length of an ellipse. Modern mathematics defines an "elliptic integral" as any function f which can be expressed in the form where R is a rational function of its two arguments, P is a polynomial of degree 3 or 4 with no repeated roots, and c is a constant.
Quadratic equationIn algebra, a quadratic equation () is any equation that can be rearranged in standard form as where x represents an unknown value, and a, b, and c represent known numbers, where a ≠ 0. (If a = 0 and b ≠ 0 then the equation is linear, not quadratic.) The numbers a, b, and c are the coefficients of the equation and may be distinguished by respectively calling them, the quadratic coefficient, the linear coefficient and the constant coefficient or free term.
Fredholm integral equationIn mathematics, the Fredholm integral equation is an integral equation whose solution gives rise to Fredholm theory, the study of Fredholm kernels and Fredholm operators. The integral equation was studied by Ivar Fredholm. A useful method to solve such equations, the Adomian decomposition method, is due to George Adomian. A Fredholm equation is an integral equation in which the term containing the kernel function (defined below) has constants as integration limits.
Stratonovich integralIn stochastic processes, the Stratonovich integral or Fisk–Stratonovich integral (developed simultaneously by Ruslan Stratonovich and Donald Fisk) is a stochastic integral, the most common alternative to the Itô integral. Although the Itô integral is the usual choice in applied mathematics, the Stratonovich integral is frequently used in physics. In some circumstances, integrals in the Stratonovich definition are easier to manipulate. Unlike the Itô calculus, Stratonovich integrals are defined such that the chain rule of ordinary calculus holds.
Exponential integralIn mathematics, the exponential integral Ei is a special function on the complex plane. It is defined as one particular definite integral of the ratio between an exponential function and its argument. For real non-zero values of x, the exponential integral Ei(x) is defined as The Risch algorithm shows that Ei is not an elementary function. The definition above can be used for positive values of x, but the integral has to be understood in terms of the Cauchy principal value due to the singularity of the integrand at zero.