Complexity classIn computational complexity theory, a complexity class is a set of computational problems "of related resource-based complexity". The two most commonly analyzed resources are time and memory. In general, a complexity class is defined in terms of a type of computational problem, a model of computation, and a bounded resource like time or memory. In particular, most complexity classes consist of decision problems that are solvable with a Turing machine, and are differentiated by their time or space (memory) requirements.
FalsifiabilityFalsifiability is a deductive standard of evaluation of scientific theories and hypotheses, introduced by the philosopher of science Karl Popper in his book The Logic of Scientific Discovery (1934). A theory or hypothesis is falsifiable (or refutable) if it can be logically contradicted by an empirical test. Popper proposed falsifiability as the cornerstone solution to both the problem of induction and the problem of demarcation.
Additive white Gaussian noiseAdditive white Gaussian noise (AWGN) is a basic noise model used in information theory to mimic the effect of many random processes that occur in nature. The modifiers denote specific characteristics: Additive because it is added to any noise that might be intrinsic to the information system. White refers to the idea that it has uniform power spectral density across the frequency band for the information system. It is an analogy to the color white which may be realized by uniform emissions at all frequencies in the visible spectrum.
IdentifiabilityIn statistics, identifiability is a property which a model must satisfy for precise inference to be possible. A model is identifiable if it is theoretically possible to learn the true values of this model's underlying parameters after obtaining an infinite number of observations from it. Mathematically, this is equivalent to saying that different values of the parameters must generate different probability distributions of the observable variables.
Double exponential functionA double exponential function is a constant raised to the power of an exponential function. The general formula is (where a>1 and b>1), which grows much more quickly than an exponential function. For example, if a = b = 10: f(x) = 1010x f(0) = 10 f(1) = 1010 f(2) = 10100 = googol f(3) = 101000 f(100) = 1010100 = googolplex. Factorials grow faster than exponential functions, but much more slowly than doubly exponential functions. However, tetration and the Ackermann function grow faster.
Systemic biasSystemic bias is the inherent tendency of a process to support particular outcomes. The term generally refers to human systems such as institutions. Systemic bias is related to and overlaps conceptually with institutional bias and structural bias, and the terms are often used interchangeably. According to Oxford Reference, institutional bias is "a tendency for the procedures and practices of particular institutions to operate in ways which result in certain social groups being advantaged or favoured and others being disadvantaged or devalued.
Cognitive biasA cognitive bias is a systematic pattern of deviation from norm or rationality in judgment. Individuals create their own "subjective reality" from their perception of the input. An individual's construction of reality, not the objective input, may dictate their behavior in the world. Thus, cognitive biases may sometimes lead to perceptual distortion, inaccurate judgment, illogical interpretation, and irrationality. While cognitive biases may initially appear to be negative, some are adaptive.
Signal processingSignal processing is an electrical engineering subfield that focuses on analyzing, modifying and synthesizing signals, such as sound, , potential fields, seismic signals, altimetry processing, and scientific measurements. Signal processing techniques are used to optimize transmissions, digital storage efficiency, correcting distorted signals, subjective video quality and to also detect or pinpoint components of interest in a measured signal. According to Alan V. Oppenheim and Ronald W.
Systematic codeIn coding theory, a systematic code is any error-correcting code in which the input data is embedded in the encoded output. Conversely, in a non-systematic code the output does not contain the input symbols. Systematic codes have the advantage that the parity data can simply be appended to the source block, and receivers do not need to recover the original source symbols if received correctly – this is useful for example if error-correction coding is combined with a hash function for quickly determining the correctness of the received source symbols, or in cases where errors occur in erasures and a received symbol is thus always correct.
Heteroskedasticity-consistent standard errorsThe topic of heteroskedasticity-consistent (HC) standard errors arises in statistics and econometrics in the context of linear regression and time series analysis. These are also known as heteroskedasticity-robust standard errors (or simply robust standard errors), Eicker–Huber–White standard errors (also Huber–White standard errors or White standard errors), to recognize the contributions of Friedhelm Eicker, Peter J. Huber, and Halbert White.