Thiol-Ene Click Chemistry as a Tool for a Novel Family of Polymeric Ionic Liquids
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Fluorination of solvents, useful for non-aqueous lithium-based batteries, improves the electrochemical stability but decreases the ionic conductivity. Here, the authors report a targeted functionalization of an ether solvent to balance the electrolyte ioni ...
Li-S batteries are a promising alternative to Li-ion batteries, offering large energy storage capacity and wide operating temperature range. However, their performance is heavily affected by the Li-polysulfide (LiPS) shuttling. Computational screening of L ...
High-energy-density and low-cost calcium (Ca) batteries have been proposed as 'beyond-Li-ion' electrochemical energy storage devices. However, they have seen limited progress due to challenges associated with developing electrolytes showing reductive/oxida ...
The solid electrolyte interphase (SEI) is a key component of a lithium-ion battery forming during the first few dischage/charge cycles at the interface between the anode and the electrolyte. The SEI passivates the anode-electrolyte interface by inhibiting ...
Lithium-ion batteries are widely implemented as energy storage devices due to their high energy density and low cost. They enabled modern portable electronics and electric ve-hicles, and are key to manage the integration of intermittent renewable electrici ...
Water-in-salt electrolytes have enabled the development of novel high-voltage aqueous lithium-ion batteries. This study explores the reasons why analogous sodium electrolytes have struggled to reach the same level of electrochemical stability. Solution str ...
Layered cathodes are among the most promising cathodes for high-energy-density Li-ion batteries, yet hindered by the structural degradation from both bulk strain and surface oxygen loss at high voltage (above 4.5 V). Herein, we report a pre-fatigue trainin ...
Li-rich oxide cathodes are drawing increasing attention as next-generation cathode materials for the development of high-energy-density Li-ion batteries due to their strikingly high capacities. However, transition-metal migration, irreversible structural p ...
Lithium-ion batteries with enhanced rate performance are of crucial importance for practical applications. Extensive studies on the structural design and surface modification of electrode materials with the aim of improving the rate performance have been r ...
The intrinsic stability of the 5 V LiCoPO4-LiCo2P3O10 thin-film (carbon-free) cathode material coated with MoO3 thin layer is studied using a comprehensive synchrotron electron spectroscopy in situ approach combined with firstprinciple calculations. The at ...