**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Partitioned Solution of Geometrical Multiscale Problems for the Cardiovascular System

Abstract

The aim of this work is the development of a geometrical multiscale framework for the simulation of the human cardiovascular system under either physiological or pathological conditions. More precisely, we devise numerical algorithms for the partitioned solution of geometrical multiscale problems made of different heterogeneous compartments that are implicitly coupled with each others. The driving motivation is the awareness that cardiovascular dynamics are governed by the global interplay between the compartments in the network. Thus, numerical simulations of stand-alone local components of the circulatory system cannot always predict effectively the physiological or pathological states of the patients, since they do not account for the interaction with the missing elements in the network. As a matter of fact, the geometrical multiscale method provides an automatic way to determine the boundary (more precisely, the interface) data for the specific problem of interest in absence of clinical measures and it also offers a platform where to study the interaction between local changes (due, for instance, to pathologies or surgical interventions) and the global systemic dynamics. To set up the framework an abstract setting is devised; the local specific mathematical equations (partial differential equations, differential algebraic equations, etc.) and the numerical approximation (finite elements, finite differences, etc.) of the heterogeneous compartments are hidden behind generic operators. Consequently, the resulting global interface problem is formulated and solved in a completely transparent way. The coupling between models of different dimensional scale (three-dimensional, one-dimensional, etc.) and type (Navier-Stokes, fluid-structure interaction, etc.) is addressed writing the interface equations in terms of scalar quantities, i.e., area, flow rate, and mean (total) normal stress. In the resulting flexible framework the heterogeneous models are treated as black boxes, each one equipped with a specific number of compatible interfaces such that (i) the arrangement of the compartments in the network can be easily manipulated, thus allowing a high level of customization in the design and optimization of the global geometrical multiscale model, (ii) the parallelization of the solution of the different compartments is straightforward, leading to the opportunity to make use of the latest high-performance computing facilities, and (iii) new models can be easily added and connected to the existing ones. The methodology and the algorithms devised throughout the work are tested over several applications, ranging from simple benchmark examples to more complex cardiovascular networks. In addition, two real clinical problems are addressed: the simulation of a patient-specific left ventricle affected by myocardial infarction and the study of the optimal position for the anastomosis of a left ventricle assist device cannula.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related concepts (17)

Numerical analysis

Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathema

Fluid–structure interaction

Fluid–structure interaction (FSI) is the interaction of some movable or deformable structure with an internal or surrounding fluid flow. Fluid–structure interactions can be stable or oscillatory. In o

Navier–Stokes equations

The Navier–Stokes equations (nævˈjeː_stəʊks ) are partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier an

Related publications (98)

Loading

Loading

Loading

Isogeometric analysis (IGA) is a computational methodology recently developed to numerically approximate Partial Differential Equation (PDEs). It is based on the isogeometric paradigm, for which the same basis functions used to represent the geometry are then used to approximate the unknown solution of the PDEs. In the case in which Non-Uniform Rational B-Splines (NURBS) are used as basis functions, their mathematical properties lead to appreciable benefits for the numerical approximation of PDEs, especially for high order PDEs in the standard Galerkin formulation. In this framework, we propose an a priori error estimate, extending existing results limited to second order PDEs. The improvements in both accuracy and efficiency of IGA compared to Finite Element Analysis (FEA), encourage the use of this methodology in the haemodynamic applications. In fact, the simulation of blood flow in arteries requires the numerical approximation of Fluid-Structure Interaction (FSI) problems. In order to account for the deformability of the vessel, the Navier-Stokes equations representing the blood flows, are coupled with structural models describing the mechanical response of the arterial wall. However, the FSI models are complex from both the mathematical and the numerical points of view, leading to high computational costs during the simulations. With the aim of reducing the complexity of the problem and the computational costs of the simulations, reduced FSI models can be considered. A first simplification, based on the assumption of a thin arterial wall structure, consists in considering shell models to describe the mechanical properties of the arterial walls. Moreover, by means of the additional kinematic condition (continuity of velocities) and dynamic condition (balance of contact forces), the structural problem can be rewritten as generalized boundary condition for the fluid problem. This results in a generalized Navier-Stokes problem which can be expressed only in terms of the primitive variables of the fluid equations (velocity and pressure) and in a fixed computational domain. As a consequence, the computational costs of the numerical simulations are significantly reduced. On the other side, the generalized boundary conditions associated to the reduced FSI model could involve high order derivatives, which need to be suitably approximated. With this respect, IGA allows an accurate, straightforward and efficient numerical approximation of the generalized Navier-Stokes equations characterizing the reduced FSI problem. In this work we consider the numerical approximation of reduced FSI models by means of IGA, for which we discuss the numerical results obtained in Haemodynamic applications.

2012This thesis addresses the development and implementation of efficient and parallel algorithms for the numerical simulation of Fluid-Structure Interaction (FSI) problems in hemodynamics. Indeed, hemodynamic conditions in large arteries are significantly affected by the interaction of the pulsatile blood flow with the arterial wall. The simulation of fluid-structure interaction problems requires the approximation of a coupled system of Partial Differential Equations (PDEs) and the set up of efficient numerical solution strategies. Blood is modeled as an incompressible Newtonian fluid whose dynamics is governed by the Navier-Stokes equations. Different constituive models are used to describe the mechanical response of the arterial wall; specifically, we rely on hyperelastic isotropic and anistotropic material laws. The finite element method is used for the space discretization of both the fluid and structure problems. In particular, for the Navier-Stokes equations we consider a semi-discrete formulation based on the Variational Multiscale (VMS) method. Among a wide range of possible solution strategies for the FSI problem, here we focus on strongly coupled monolithic approaches wherein the nonlinearities are treated in a fully implicit mode. To cope with the high computational complexity of the three dimensional FSI problem, a parallel solution framework is often mandatory. To this end, we develop a new block parallel preconditioner for the coupled linearized FSI system obtained after space and time discretization. The proposed preconditioner, named FaCSI, exploits the factorized form of the FSI Jacobian matrix, the use of static condensation to formally eliminate the interface degrees of freedom of the fluid equations, and the use of a SIMPLE preconditioner for unsteady Navier-Stokes equations. In FSI problems, the different resolution requirements in the fluid and structure physical domains, as well as the presence of complex interface geometries make the use of matching fluid and structure meshes problematic. In such situations, it is much simpler to deal with discretizations that are nonconforming at the interface, provided however that the matching conditions at the interface are properly fulfilled. In this thesis we develop a novel interpolation-based method, named INTERNODES, for numerically solving partial differential equations by Galerkin methods on computational domains that are split into two (or several) subdomains featuring nonconforming interfaces. By this we mean that either a priori independent grids and/or local polynomial degrees are used to discretize each subdomain. INTERNODES can be regarded as an alternative to the mortar element method: it combines the accuracy of the latter with the easiness of implementation in a numerical code. The aforementioned techniques have been applied for the numerical simulation of large-scale fluid-structure interaction problems in the context of biomechanics. The parallel algorithms developed showed scalability up to thousands of cores utilized on high performance computing machines.

In this work, various aspects concerning the numerical simulation of a sailing boat are investigated. The attention is focused on simulation of the free-surface, the fluid-structure interaction (FSI) between wind and sails, and the dynamics of the whole boat. Some preliminary work on shape optimization is also presented. Free-surface simulations are carried out both on classical academic benchmark problems and for the prediction of the wave pattern around racing yachts. The comparison with experimental results and numerical data obtained with other CFD codes has proven the validity of the proposed set-up. In this framework, the Level Set method has been implemented and validated as a possible solution to the problem of interface diffusion arising in planing conditions with the standard Volume of Fluid approach. The FSI problem governing the interaction between wind and sails is solved via a strongly coupled segregated approach based on the standard Dirichlet-Neumann coupling. The structural solution is based on a MITC4 finite-element shell code. The fluid and structural meshes are non-conforming and the exchange of information at the interface is obtained via radial basis functions (RBF) interpolation. The fluid mesh motion is accomplished either through the mapping generated using the radial basis functions or via a method based on the inverse distance weighting (IDW) interpolations. The attention is paid to the methodological aspects of this complex problem and to the analysis of the numerical results. The fluid-structure interaction simulations of one and two sail configurations, with different trimmings, are presented; both steady and transient simulations are performed. The results obtained are very encouraging and show the potential of the proposed model. The dynamic motion of the Series 60 hull and the Alinghi’s AC 32 monohull complete of bulb, keel and sails have also been investigated. For the latter in particular, the free sink, trim and roll case has proven to be particularly interesting, with the boat rolling considerably on the side due to the aerodynamic loads exerted by the wind on the sails. Here, the whole boat has been considered as a rigid body but the integration of the FSI module for the sails into the full boat dynamic system is already under development. Finally, a preliminary analysis of shape optimization techniques applied to sailing boat elements have been investigated: in particular the attention has been focused on the drag minimization of (pseudo) bulb geometries under the constraint of fixed volume/fixed righting moment. The shape parametrization have been achieved either using directly the surface element nodes or via the Free Form Deformation (FFD) technique while the optimization algorithm has been based either on the solution of the adjoint Navier-Stokes equations or via pseudo finite-difference algorithms. The algorithm and developments mentioned have been implemented in a common open-source framework, the library OpenFOAM®.