Kagome Antiferromagnet: A Chiral Topological Spin Liquid?
Related publications (37)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This work is devoted to the study of spin S = 1 systems, and more precisely to the emergence of exotic quantum phases in such systems, and to the establishment of tools to observe such phases. It is split in four main chapters. In the first chapter, we sho ...
We performed ultrafast time-resolved near-infrared pump, resonant soft x-ray diffraction probe measurements to investigate the coupling between the photoexcited electronic system and the spin cycloid magnetic order in multiferroic TbMnO3 at low temperature ...
We carried out ac magnetic susceptibility measurements and muon spin relaxation spectroscopy on the cubic double perovskite Ba2YMoO6, down to 50 mK. Below similar to 1 K the muon relaxation is typical of a magnetic insulator with a spin-liquid type ground ...
Institute of Physics (IoP) and Deutsche Physikalische Gesellschaft2013
Motivated by the recent discovery of a spin-liquid phase for the Hubbard model on the honeycomb lattice at half-filling (Meng et al 2010 Nature 88 487), we apply both perturbative and non-perturbative techniques to derive effective spin Hamiltonians descri ...
The principal aim of this thesis is to gain a better understanding of the competition between magnetic and quadrupolar degrees of freedom on two-dimensional lattices. Recent experimental investigations of the material NiGa2S4 revealed several anomalous pro ...
This work is devoted to the study, the development, and the application of a new systematic method yielding the dominant correlations that govern a quantum many-body state in an unbiased way. The dominant correlations between any two disjoint blocks of a s ...
From cosmology to the microscopic scales of the quantum world, the study of topological excitations is essential for the understanding of phase conformation and phase transitions. Quantum fluids are convenient systems to investigate topological entities be ...
We revisit the SU(6) Heisenberg model on the honeycomb lattice, which has been predicted to be a chiral spin liquid by mean-field theory [G. Szirmai et al., Phys. Rev. A 84, 011611(R) (2011)]. Using exact diagonalizations of finite clusters, infinite proje ...
We consider some classical and frustrated lattice spin models with global O(3) spin symmetry. No general analytical method to find a ground state exists when the spin dependence of the Hamiltonian is more than quadratic (i.e., beyond the Heisenberg model) ...
The first part of this thesis is devoted to classical magnetic systems. A method for an exhaustive search of states that do not break any spatial symmetry on a given lattice is presented. New Néel states on the kagome lattice are described. Their static st ...