Beta functionIn mathematics, the beta function, also called the Euler integral of the first kind, is a special function that is closely related to the gamma function and to binomial coefficients. It is defined by the integral for complex number inputs such that . The beta function was studied by Leonhard Euler and Adrien-Marie Legendre and was given its name by Jacques Binet; its symbol Β is a Greek capital beta. The beta function is symmetric, meaning that for all inputs and .
Error functionIn mathematics, the error function (also called the Gauss error function), often denoted by erf, is a complex function of a complex variable defined as: Some authors define without the factor of . This nonelementary integral is a sigmoid function that occurs often in probability, statistics, and partial differential equations. In many of these applications, the function argument is a real number. If the function argument is real, then the function value is also real.
Medical procedureA medical procedure is a course of action intended to achieve a result in the delivery of healthcare. A medical procedure with the intention of determining, measuring, or diagnosing a patient condition or parameter is also called a medical test. Other common kinds of procedures are therapeutic (i.e., intended to treat, cure, or restore function or structure), such as surgical and physical rehabilitation procedures. "An activity directed at or performed on an individual with the object of improving health, treating disease or injury, or making a diagnosis.
Rule of inferenceIn philosophy of logic and logic, a rule of inference, inference rule or transformation rule is a logical form consisting of a function which takes premises, analyzes their syntax, and returns a conclusion (or conclusions). For example, the rule of inference called modus ponens takes two premises, one in the form "If p then q" and another in the form "p", and returns the conclusion "q". The rule is valid with respect to the semantics of classical logic (as well as the semantics of many other non-classical logics), in the sense that if the premises are true (under an interpretation), then so is the conclusion.
Statistical inferenceStatistical inference is the process of using data analysis to infer properties of an underlying distribution of probability. Inferential statistical analysis infers properties of a population, for example by testing hypotheses and deriving estimates. It is assumed that the observed data set is sampled from a larger population. Inferential statistics can be contrasted with descriptive statistics. Descriptive statistics is solely concerned with properties of the observed data, and it does not rest on the assumption that the data come from a larger population.
Specification (technical standard)A specification often refers to a set of documented requirements to be satisfied by a material, design, product, or service. A specification is often a type of technical standard. There are different types of technical or engineering specifications (specs), and the term is used differently in different technical contexts. They often refer to particular documents, and/or particular information within them. The word specification is broadly defined as "to state explicitly or in detail" or "to be specific".
Fourier transformIn physics and mathematics, the Fourier transform (FT) is a transform that converts a function into a form that describes the frequencies present in the original function. The output of the transform is a complex-valued function of frequency. The term Fourier transform refers to both this complex-valued function and the mathematical operation. When a distinction needs to be made the Fourier transform is sometimes called the frequency domain representation of the original function.
Bayesian inferenceBayesian inference (ˈbeɪziən or ˈbeɪʒən ) is a method of statistical inference in which Bayes' theorem is used to update the probability for a hypothesis as more evidence or information becomes available. Bayesian inference is an important technique in statistics, and especially in mathematical statistics. Bayesian updating is particularly important in the dynamic analysis of a sequence of data. Bayesian inference has found application in a wide range of activities, including science, engineering, philosophy, medicine, sport, and law.
Wender Taxol total synthesisWender Taxol total synthesis in organic chemistry describes a Taxol total synthesis (one of six to date) by the group of Paul Wender at Stanford University published in 1997. This synthesis has much in common with the Holton Taxol total synthesis in that it is a linear synthesis starting from a naturally occurring compound with ring construction in the order A,B,C,D. The Wender effort is shorter by approximately 10 steps. Raw materials for the preparation of Taxol by this route include verbenone, prenyl bromine, allyl bromide, propiolic acid, Gilman reagent, and Eschenmoser's salt.
Organic synthesisOrganic synthesis is a special branch of chemical synthesis and is concerned with the intentional construction of organic compounds. Organic molecules are often more complex than inorganic compounds, and their synthesis has developed into one of the most important branches of organic chemistry. There are several main areas of research within the general area of organic synthesis: total synthesis, semisynthesis, and methodology.