Nigel HitchinNigel James Hitchin FRS (born 2 August 1946) is a British mathematician working in the fields of differential geometry, gauge theory, algebraic geometry, and mathematical physics. He is a Professor Emeritus of Mathematics at the University of Oxford. Hitchin attended Ecclesbourne School, Duffield, and earned his BA in mathematics from Jesus College, Oxford, in 1968. After moving to Wolfson College, he received his D.Phil. in 1972. From 1971 to 1973 he visited the Institute for Advanced Study and 1973/74 the Courant Institute of Mathematical Sciences of New York University.
Einstein tensorIn differential geometry, the Einstein tensor (named after Albert Einstein; also known as the trace-reversed Ricci tensor) is used to express the curvature of a pseudo-Riemannian manifold. In general relativity, it occurs in the Einstein field equations for gravitation that describe spacetime curvature in a manner that is consistent with conservation of energy and momentum. The Einstein tensor is a tensor of order 2 defined over pseudo-Riemannian manifolds.
Swampland (physics)In physics, the term swampland refers to effective low-energy physical theories which are not compatible with quantum gravity. This is in contrast with the so-called "string theory landscape" that are known to be compatible with string theory, which is believed to be a consistent quantum theory of gravity. In other words, the Swampland is the set of consistent-looking theories with no consistent ultraviolet completion with the addition of gravity.
OrbifoldIn the mathematical disciplines of topology and geometry, an orbifold (for "orbit-manifold") is a generalization of a manifold. Roughly speaking, an orbifold is a topological space which is locally a finite group quotient of a Euclidean space. Definitions of orbifold have been given several times: by Ichirô Satake in the context of automorphic forms in the 1950s under the name V-manifold; by William Thurston in the context of the geometry of 3-manifolds in the 1970s when he coined the name orbifold, after a vote by his students; and by André Haefliger in the 1980s in the context of Mikhail Gromov's programme on CAT(k) spaces under the name orbihedron.
Tensor–vector–scalar gravityTensor–vector–scalar gravity (TeVeS), developed by Jacob Bekenstein in 2004, is a relativistic generalization of Mordehai Milgrom's Modified Newtonian dynamics (MOND) paradigm. The main features of TeVeS can be summarized as follows: As it is derived from the action principle, TeVeS respects conservation laws; In the weak-field approximation of the spherically symmetric, static solution, TeVeS reproduces the MOND acceleration formula; TeVeS avoids the problems of earlier attempts to generalize MOND, such as superluminal propagation; As it is a relativistic theory it can accommodate gravitational lensing.
Ddbar lemmaIn complex geometry, the lemma (pronounced ddbar lemma) is a mathematical lemma about the de Rham cohomology class of a complex differential form. The -lemma is a result of Hodge theory and the Kähler identities on a compact Kähler manifold. Sometimes it is also known as the -lemma, due to the use of a related operator , with the relation between the two operators being and so .
No-hair theoremThe no-hair theorem states that all stationary black hole solutions of the Einstein–Maxwell equations of gravitation and electromagnetism in general relativity can be completely characterized by only three independent externally observable classical parameters: mass, electric charge, and angular momentum.
Stereographic projectionIn mathematics, a stereographic projection is a perspective projection of the sphere, through a specific point on the sphere (the pole or center of projection), onto a plane (the projection plane) perpendicular to the diameter through the point. It is a smooth, bijective function from the entire sphere except the center of projection to the entire plane. It maps circles on the sphere to circles or lines on the plane, and is conformal, meaning that it preserves angles at which curves meet and thus locally approximately preserves shapes.