In differential geometry, the Einstein tensor (named after Albert Einstein; also known as the trace-reversed Ricci tensor) is used to express the curvature of a pseudo-Riemannian manifold. In general relativity, it occurs in the Einstein field equations for gravitation that describe spacetime curvature in a manner that is consistent with conservation of energy and momentum.
The Einstein tensor is a tensor of order 2 defined over pseudo-Riemannian manifolds. In index-free notation it is defined as
where is the Ricci tensor, is the metric tensor and is the scalar curvature, which is computed as the trace of the Ricci Tensor by . In component form, the previous equation reads as
The Einstein tensor is symmetric
and, like the on shell stress–energy tensor, has zero divergence:
The Ricci tensor depends only on the metric tensor, so the Einstein tensor can be defined directly with just the metric tensor. However, this expression is complex and rarely quoted in textbooks. The complexity of this expression can be shown using the formula for the Ricci tensor in terms of Christoffel symbols:
where is the Kronecker tensor and the Christoffel symbol is defined as
and terms of the form represent its partial derivative in the μ-direction, i.e.:
Before cancellations, this formula results in individual terms. Cancellations bring this number down somewhat.
In the special case of a locally inertial reference frame near a point, the first derivatives of the metric tensor vanish and the component form of the Einstein tensor is considerably simplified:
where square brackets conventionally denote antisymmetrization over bracketed indices, i.e.
The trace of the Einstein tensor can be computed by contracting the equation in the definition with the metric tensor . In dimensions (of arbitrary signature):
Therefore, in the special case of n = 4 dimensions, . That is, the trace of the Einstein tensor is the negative of the Ricci tensor's trace. Thus, another name for the Einstein tensor is the trace-reversed Ricci tensor.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is the basic introduction to modern cosmology. It introduces students to the main concepts and formalism of cosmology, the observational status of Hot Big Bang theory
and discusses major
This course will serve as a first introduction to the geometry of Riemannian manifolds, which form an indispensible tool in the modern fields of differential geometry, analysis and theoretical physics
In general relativity, the metric tensor (in this context often abbreviated to simply the metric) is the fundamental object of study. The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past. In general relativity, the metric tensor plays the role of the gravitational potential in the classical theory of gravitation, although the physical content of the associated equations is entirely different.
The mathematics of general relativity is complex. In Newton's theories of motion, an object's length and the rate at which time passes remain constant while the object accelerates, meaning that many problems in Newtonian mechanics may be solved by algebra alone. In relativity, however, an object's length and the rate at which time passes both change appreciably as the object's speed approaches the speed of light, meaning that more variables and more complicated mathematics are required to calculate the object's motion.
In the mathematical field of Riemannian geometry, the scalar curvature (or the Ricci scalar) is a measure of the curvature of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the geometry of the metric near that point. It is defined by a complicated explicit formula in terms of partial derivatives of the metric components, although it is also characterized by the volume of infinitesimally small geodesic balls.
Introduces scalar gravity, covering covariant derivatives, Ricci tensor, Einstein Equivalence Principle, and the generalization of Newtonian gravity equations.
Explores luminosity distance, the Einstein field equation, Stephen Hawking's contributions, and the cosmological principle, among other cosmological concepts.
Explores collisionless systems stability, covering the Virial Equation, Equilibria, Moments of the Collisionless Boltzmann Equation, and the origin of instability.
In the framework of mixed Higgs-Starobinsky inflation, we consider the generation of Abelian gauge fields due to their nonminimal coupling to gravity (in two different formulations of gravity-metric and Palatini). We couple the gauge-field invariants F mu ...
We study scalar, fermionic and gauge fields coupled nonminimally to gravity in the Einstein-Cartan formulation. We construct a wide class of models with nondynamical torsion whose gravitational spectra comprise only themassless graviton. Eliminating nonpro ...
This paper deals with the initial value problem for a semilinear wave equation on a bounded domain and solutions are required to vanish on the boundary of this domain. The essential feature of the situation considered here is that the ellipticity of the sp ...