Reduced Basis Methods for the Solution of Parametrized PDEs in Repetitive and Complex Networks with Application to CFD
Related publications (108)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Contact of rough surfaces is of prime importance in the study of friction and wear. Numerical simulations are well suited for this non-linear problem, but natural surfaces being fractal [1], they have high discretization requirements. There is therefore a ...
In this thesis we address the computation of a spectral decomposition for symmetric
banded matrices. In light of dealing with large-scale matrices, where classical dense
linear algebra routines are not applicable, it is essential to design alternative tech ...
During the past decade, model order reduction (MOR) has been successfully applied to reduce the computational complexity of elliptic and parabolic systems of partial differential equations (PDEs). However, MOR of hyperbolic equations remains a challenge. S ...
We propose a distributed design method for decentralized control by exploiting the underlying sparsity properties of the problem. Our method is based on chordal decomposition of sparse block matrices and the alternating direction method of multipliers (ADM ...
This report provides an overview of the work carried out in improving Language Model (LM) development used during the decoding of an Automatic Speech Recognition (ASR) system. The goal of this work is to develop a robust language model that can be adapted ...
Macroscale and mesoscale simulations of hyper-concentrated sediment-laden flows rely on robust couplings of the Reynolds-Averaged Navier-Stokes equations in conjunction with the shear-stress transport k-ω turbulence model. Also other closure laws for model ...
This article presents for the first time an OpenACC (Open accelerators)-aided Graphics Processing Unit (GPU)-based approach adopting a 3D moving window finite difference time domain (MW-FDTD) method for calculating lightning electromagnetic fields over lar ...
We consider model order reduction of parameterized Hamiltonian systems describing nondissipative phenomena, like wave-type and transport dominated problems. The development of reduced basis methods for such models is challenged by two main factors: the ric ...
This paper deals with a main limitation of Markovian traffic assignment (MTA) models: when the network includes cyclic structures and the link costs are small enough, the fact that the MTA models assign traffic flows to all feasible paths causes computatio ...
Solving hyperbolic conservation laws on general grids can be important to reduce the computational complexity and increase accuracy in many applications. However, the use of non-uniform grids can introduce challenges when using high-order methods. We propo ...