Publication

Geometric Model Order Reduction

Babak Maboudi Afkham
2018
EPFL thesis
Abstract

During the past decade, model order reduction (MOR) has been successfully applied to reduce the computational complexity of elliptic and parabolic systems of partial differential equations (PDEs). However, MOR of hyperbolic equations remains a challenge. Symmetries and conservation laws, which are a distinctive feature of such systems, are often destroyed by conventional MOR techniques, resulting in a perturbed and often unstable reduced system. The goal of this thesis is to study and develop model order reduction techniques that can preserve nonlinear invariants, symmetries, and conservation laws and to understand the stability properties of these methods compared to conventional techniques. Hamiltonian systems, as systems that are driven by symmetries, are studied intensively from the point of view of MOR. Furthermore, a conservative model reduction of fluid flow is presented. It is illustrated that conserving invariants, conservation laws, and symmetries not only result in a physically meaningful reduced system but also result in an accurate and robust reduced system with enhanced stability.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.