Publication

Advantages of Variance Stabilization

Abstract

Variance stabilization is a simple device for normalizing a statistic. Even though its large sample properties are similar to those of studentizing, many simulation studies of confidence interval procedures show that variance stabilization works better for small samples. We investigated this question in the context of testing a null hypothesis involving a single parameter. We provide support for a measure of evidence for an alternative hypothesis that is simple to compute, calibrate and interpret. It has applications in most routine problems in statistics, and leads to more accurate confidence intervals, estimated power and hence sample size calculations than standard asymptotic methods. Such evidence is readily combined when obtained from different studies. Connections to other approaches to statistical evidence are described, with a notable link to Kullback–Leibler symmetrized divergence.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (35)
Statistical hypothesis testing
A statistical hypothesis test is a method of statistical inference used to decide whether the data at hand sufficiently support a particular hypothesis. Hypothesis testing allows us to make probabilistic statements about population parameters. While hypothesis testing was popularized early in the 20th century, early forms were used in the 1700s. The first use is credited to John Arbuthnot (1710), followed by Pierre-Simon Laplace (1770s), in analyzing the human sex ratio at birth; see .
Statistical significance
In statistical hypothesis testing, a result has statistical significance when a result at least as "extreme" would be very infrequent if the null hypothesis were true. More precisely, a study's defined significance level, denoted by , is the probability of the study rejecting the null hypothesis, given that the null hypothesis is true; and the p-value of a result, , is the probability of obtaining a result at least as extreme, given that the null hypothesis is true. The result is statistically significant, by the standards of the study, when .
Sampling (statistics)
In statistics, quality assurance, and survey methodology, sampling is the selection of a subset or a statistical sample (termed sample for short) of individuals from within a statistical population to estimate characteristics of the whole population. Statisticians attempt to collect samples that are representative of the population. Sampling has lower costs and faster data collection compared to recording data from the entire population, and thus, it can provide insights in cases where it is infeasible to measure an entire population.
Show more
Related publications (67)

Higher Order Asymptotics: Applications to Satellite Conjunction and Boundary Problems

Soumaya Elkantassi

Higher-order asymptotics provide accurate approximations for use in parametric statistical modelling. In this thesis, we investigate using higher-order approximations in two-specific settings, with a particular emphasis on the tangent exponential model. Th ...
EPFL2023

Machine Learning Security in Industry: A Quantitative Survey

Kathrin Grosse

Despite the large body of academic work on machine learning security, little is known about the occurrence of attacks on machine learning systems in the wild. In this paper, we report on a quantitative study with 139 industrial practitioners. We analyze at ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2023

Partial Information Sharing Over Social Learning Networks

Ali H. Sayed, Virginia Bordignon

This work addresses the problem of sharing partial information within social learning strategies. In social learning, agents solve a distributed multiple hypothesis testing problem by performing two operations at each instant: first, agents incorporate inf ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2023
Show more
Related MOOCs (11)
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Digital Signal Processing III
Advanced topics: this module covers real-time audio processing (with examples on a hardware board), image processing and communication system design.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.