Geometric calculusIn mathematics, geometric calculus extends the geometric algebra to include differentiation and integration. The formalism is powerful and can be shown to encompass other mathematical theories including vector calculus, differential geometry, and differential forms. With a geometric algebra given, let and be vectors and let be a multivector-valued function of a vector. The directional derivative of along at is defined as provided that the limit exists for all , where the limit is taken for scalar .
Lie groupIn mathematics, a Lie group (pronounced liː ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additional properties it must have to be thought of as a "transformation" in the abstract sense, for instance multiplication and the taking of inverses (division), or equivalently, the concept of addition and the taking of inverses (subtraction).
Trapezoidal ruleIn calculus, the trapezoidal rule (also known as the trapezoid rule or trapezium rule; see Trapezoid for more information on terminology) is a technique for approximating the definite integral. The trapezoidal rule works by approximating the region under the graph of the function as a trapezoid and calculating its area. It follows that The trapezoidal rule may be viewed as the result obtained by averaging the left and right Riemann sums, and is sometimes defined this way.
Comparison of numerical-analysis softwareThe following tables provide a comparison of numerical analysis software. The operating systems the software can run on natively (without emulation). Colors indicate features available as The operating systems the software can run on natively (without emulation).
Arithmetic–geometric meanIn mathematics, the arithmetic–geometric mean of two positive real numbers x and y is the mutual limit of a sequence of arithmetic means and a sequence of geometric means: Begin the sequences with x and y: Then define the two interdependent sequences (an) and (gn) as These two sequences converge to the same number, the arithmetic–geometric mean of x and y; it is denoted by M(x, y), or sometimes by agm(x, y) or AGM(x, y). The arithmetic–geometric mean is used in fast algorithms for exponential and trigonometric functions, as well as some mathematical constants, in particular, computing π.
Extensions of symmetric operatorsIn functional analysis, one is interested in extensions of symmetric operators acting on a Hilbert space. Of particular importance is the existence, and sometimes explicit constructions, of self-adjoint extensions. This problem arises, for example, when one needs to specify domains of self-adjointness for formal expressions of observables in quantum mechanics. Other applications of solutions to this problem can be seen in various moment problems. This article discusses a few related problems of this type.
Kolmogorov–Arnold–Moser theoremThe Kolmogorov–Arnold–Moser (KAM) theorem is a result in dynamical systems about the persistence of quasiperiodic motions under small perturbations. The theorem partly resolves the small-divisor problem that arises in the perturbation theory of classical mechanics. The problem is whether or not a small perturbation of a conservative dynamical system results in a lasting quasiperiodic orbit. The original breakthrough to this problem was given by Andrey Kolmogorov in 1954.
National Trust for Historic PreservationThe National Trust for Historic Preservation is a privately funded, nonprofit organization based in Washington, D.C., that works in the field of historic preservation in the United States. The member-supported organization was founded in 1949 by congressional charter to support the preservation of America’s diverse historic buildings, neighborhoods, and heritage through its programs, resources, and advocacy.
Locally integrable functionIn mathematics, a locally integrable function (sometimes also called locally summable function) is a function which is integrable (so its integral is finite) on every compact subset of its domain of definition. The importance of such functions lies in the fact that their function space is similar to Lp spaces, but its members are not required to satisfy any growth restriction on their behavior at the boundary of their domain (at infinity if the domain is unbounded): in other words, locally integrable functions can grow arbitrarily fast at the domain boundary, but are still manageable in a way similar to ordinary integrable functions.