In calculus, the trapezoidal rule (also known as the trapezoid rule or trapezium rule; see Trapezoid for more information on terminology) is a technique for approximating the definite integral.
The trapezoidal rule works by approximating the region under the graph of the function
as a trapezoid and calculating its area. It follows that
The trapezoidal rule may be viewed as the result obtained by averaging the left and right Riemann sums, and is sometimes defined this way. The integral can be even better approximated by partitioning the integration interval, applying the trapezoidal rule to each subinterval, and summing the results. In practice, this "chained" (or "composite") trapezoidal rule is usually what is meant by "integrating with the trapezoidal rule". Let be a partition of such that and be the length of the -th subinterval (that is, ), then
When the partition has a regular spacing, as is often the case, that is, when all the have the same value the formula can be simplified for calculation efficiency by factoring out:.
The approximation becomes more accurate as the resolution of the partition increases (that is, for larger , all decrease).
As discussed below, it is also possible to place error bounds on the accuracy of the value of a definite integral estimated using a trapezoidal rule.
A 2016 Science paper reports that the trapezoid rule was in use in Babylon before 50 BCE for integrating the velocity of Jupiter along the ecliptic.
When the grid spacing is non-uniform, one can use the formula
wherein
For a domain discretized into equally spaced panels, considerable simplification may occur. Let
the approximation to the integral becomes
The error of the composite trapezoidal rule is the difference between the value of the integral and the numerical result:
There exists a number ξ between a and b, such that
It follows that if the integrand is concave up (and thus has a positive second derivative), then the error is negative and the trapezoidal rule overestimates the true value.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In numerical integration, Simpson's rules are several approximations for definite integrals, named after Thomas Simpson (1710–1761). The most basic of these rules, called Simpson's 1/3 rule, or just Simpson's rule, reads In German and some other languages, it is named after Johannes Kepler, who derived it in 1615 after seeing it used for wine barrels (barrel rule, Keplersche Fassregel). The approximate equality in the rule becomes exact if f is a polynomial up to and including 3rd degree.
In numerical analysis, Romberg's method is used to estimate the definite integral by applying Richardson extrapolation repeatedly on the trapezium rule or the rectangle rule (midpoint rule). The estimates generate a triangular array. Romberg's method is a Newton–Cotes formula – it evaluates the integrand at equally spaced points. The integrand must have continuous derivatives, though fairly good results may be obtained if only a few derivatives exist.
In mathematics, a Riemann sum is a certain kind of approximation of an integral by a finite sum. It is named after nineteenth century German mathematician Bernhard Riemann. One very common application is approximating the area of functions or lines on a graph, but also the length of curves and other approximations. The sum is calculated by partitioning the region into shapes (rectangles, trapezoids, parabolas, or cubics) that together form a region that is similar to the region being measured, then calculating the area for each of these shapes, and finally adding all of these small areas together.
This course introduces students to modern computational and mathematical techniques for solving problems in chemistry and chemical engineering. The use of introduced numerical methods will be demonstr
Le cours présente des méthodes numériques pour la résolution de problèmes mathématiques comme des systèmes d'équations linéaires ou non linéaires, approximation de fonctions, intégration et dérivation
The explicit split-operator algorithm has been extensively used for solving not only linear but also nonlinear time-dependent Schrödinger equations. When applied to the nonlinear Gross–Pitaevskii equation, the method remains time-reversible, norm-conservin ...
In this paper we derive quantitative estimates in the context of stochastic homogenization for integral functionals defined on finite partitions, where the random surface integrand is assumed to be stationary. Requiring the integrand to satisfy in addition ...
We introduce the "continuized" Nesterov acceleration, a close variant of Nesterov acceleration whose variables are indexed by a continuous time parameter. The two variables continuously mix following a linear ordinary differential equation and take gradien ...