A priori and a posteriori $W^{1,\infty}$ error analysis of a QC method for complex lattices
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this work, we consider an elliptic partial differential equation with a random coefficient solved with the stochastic collocation finite element method. The random diffusion coefficient is assumed to depend in an affine way on independent random variabl ...
In this work, we consider an elliptic partial differential equation (PDE) with a random coefficient solved with the stochastic collocation finite element method (SC-FEM). The random diffusion coefficient is assumed to depend in an affine way on independent ...
method) for the time discretization of an unstationary Stokes problem in D c Rd (d = 2,3) given t, f,u0; (P) find (u, p) solution to ult. = u0, ujav = 0 and: au ptAu + V p = f, divu = 0 on (0, T) x D. at Inspired by the analyses of the Backward Euler schem ...
In this thesis, we treat robust estimation for the parameters of the Ornstein–Uhlenbeck process, which are the mean, the variance, and the friction. We start by considering classical maximum likelihood estimation. For the simulation study, where we also in ...
In this paper we present an a posteriori error analysis for elliptic homogenization problems discretized by the finite element heterogeneous multiscale method. Unlike standard finite element methods, our discretization scheme relies on macro- and microfini ...
This thesis is devoted to the derivation of error estimates for partial differential equations with random input data, with a focus on a posteriori error estimates which are the basis for adaptive strategies. Such procedures aim at obtaining an approximati ...
In this article, a finite element error analysis is performed on a class of linear and nonlinear elliptic problems with small uncertain input. Using a perturbation approach, the exact (random) solution is expanded up to a certain order with respect to a pa ...
This work is devoted to an adaptive multiscale finite element method (MsFEM) for solving elliptic problems with rapidly oscillating coefficients. Starting from a general version of the MsFEM with oversampling, we derive an a posteriori estimate for the H-1 ...
We present an "a posteriori" error analysis in quantities of interest for elliptic homogenization problems discretized by the finite element heterogeneous multiscale method. The multiscale method is based on a macro-to-micro formulation, where the macrosco ...
We present a diffusion-based bias-compensated recursive least squares (RLS) algorithm for distributed estimation in ad-hoc adaptive sensor networks where nodes cooperate to estimate a common deterministic parameter vector. It is assumed that both the regre ...