**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Limit Behaviour of the Voter Model, Exclusion Process and Regenerative Chains

Abstract

Though the following topics seem unlinked, most of the tools used in this thesis are related to random walks and renewal theory. After introducing the voter model, we consider the parabolic Anderson model with the voter model as catalyst. In GÄRTNER, DEN HOLLANDER and MAILLARD [44], the behaviour of the annealed Lyapunov exponents, i.e., the exponential growth rates of the successive moments of the reactant with respect to the catalyst, was investigated. It was shown that these exponents exhibit an interesting dependence on the dimension and on the diffusion constant. In Chapter 3 we address some questions left open in this paper by considering specifically when the Lyapunov exponents are the a priori maximal value. Then, we use exclusion process techniques to show that the evolution of a perturbed threshold voter model is recurrent in the critical case. The key to our approach is to develop the ideas of BRAMSON and MOUNTFORD [9] : we exhibit a Lyapunov-Foster function for the discrete time version of the process. We also make a widespread use of coupling arguments. Finally, using the regenerative scheme of COMETS, FERNÁNDEZ and FERRARI [19], we establish a functional central limit theorem for discrete time stochastic processes with summable memory decay. Furthermore, under stronger assumptions on the memory decay, we identify the limiting variance in terms of the process only. As applications, we define classes of binary autoregressive processes and power-law Ising chains for which the limit theorem is fulfilled.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related publications (1)

Loading

Related concepts (13)

Stochastic process

In probability theory and related fields, a stochastic (stəˈkæstɪk) or random process is a mathematical object usually defined as a sequence of random variables, where the index of the sequence has

Central limit theorem

In probability theory, the central limit theorem (CLT) establishes that, in many situations, for independent and identically distributed random variables, the sampling distribution of the standardiz

Random walk

In mathematics, a random walk is a random process that describes a path that consists of a succession of random steps on some mathematical space.
An elementary example of a random walk is the rando

We study stationary max-stable processes {n(t): t is an element of R} admitting a representation of the form n(t) = max(i is an element of N) (U-i +Y-i(t)), where Sigma(infinity)(i=1) delta U-i is a Poisson point process on R with intensity e(-u)du, and Y1,Y2 are i.i.d. copies of a process {Y (t) : t is an element of R} obtained by running a Levy process for positive t and a dual Levy process for negative t. We give a general construction of such Levy-Brown-Resnick processes, where the restrictions of Y to the positive and negative half-axes are Levy processes with random birth and killing times. We show that these max-stable processes appear as limits of suitably normalized pointwise maxima of the form Mn(t) = max(i=1),...,n xi i (s(n) + t), where xi 1, xi 2... are i.i.d. Levy processes and sn is a sequence such that s(n) similar to clog n with c > 0. Also, we consider maxima of the form max(i=1),...,n Z(i) (t/log n), where Zi, Z2,... are i.i.d. Ornstein-Uhlenbeck processes driven by an alpha-stable noise with skewness parameter beta = -1. After a linear normalization, we again obtain limiting max-stable processes of the above form. This gives a generalization of the results of Brown and Resnick (1977) to the totally skewed a-stable case. (C) 2015 Elsevier B.V. All rights reserved.