Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The operation of Nb–Ti superconducting magnets in He II relies on superfluidity to overcome the severe thermal barrier represented by the cable electrical insulation. In wrapped cable insulations, like those used for the main magnets of the Large Hadron Co ...
Spurred by the question of the maximum allowable energy for the operation of the Large Hadron Collider (LHC), we have progressed in the understanding of the thermo-electric behavior of the 13 kA superconducting bus bars interconnecting its main magnets. A ...
In this thesis work we investigate the heat transfer through the electrical insulation of superconducting cables cooled by super fluid helium. The cable insulation constitutes the most severe barrier for heat extraction from the superconducting magnets of ...
NbTi-based Rutherford cables are used in the coils of the Large Hadron Collider (LHC) magnets. These cables are designed to operate with currents up to 13 kA at temperatures of 1.9 K. Beam losses can locally heat the superconducting cables above the critic ...
A new concept of polyimide electrical insulation for superconducting cables of accelerator magnets was developed in the last years. Its enhanced He II permeability allows a significant improvement of the heat extraction from the coil. This cable insulation ...
Superconducting magnets can exhibit training quenches during successive powering to reaching nominal performance. The slip-stick motion of the conductors is considered to be one of the mechanisms of training. In this paper we present a simple quantitative ...
NbTi-based Rutherford cables are used in the coils of the Large Hadron Collider (LHC) magnets. These cables are designed to operate with currents up to 13 kA at temperatures of 1.9 K. Beam losses can locally heat the superconducting cables above the critic ...
In the first two years of operation of the CERN Large Hadron Collider (LHC), the betatron squeeze has been carried out at constant flat top energy of 3.5 TeV. Squeeze setting functions are separated from the energy ramp functions. This ensured a maximum fl ...
MgB2 wire is a promising superconductor for the superconducting links for the high-luminosity upgrade of the large Hadron collider at CERN. The mechanical properties of MgB2 must be fully quantified for the cable design, and in this study, we evaluate the ...
The CERN-LHC is a high energy particle collider, where intense proton bunches are brought into collision. In order to achieve optimum performance, the bunches must have a high brightness, leading to strong and significant beam-beam effects. Experimental te ...