Fatigue Life Prediction of Adhesively-Bonded Fiber-Reinforced Polymer Structural Joints under Spectrum Loading Patterns
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Publications related to Fatigue Life Prediction of Adhesively-Bonded Fiber-Reinforced Polymer Structural Joints under Spectrum Loading Patterns | EPFL Graph Search
Biominerals are used by natural organisms for example as structural supports and optical sensors. They are produced from a limited number of elements and under ambient conditions. Nevertheless, they often possess excellent mechanical properties and sometim ...
Examining the performance of an existing bridge requires information on several aspects, such as design choices, material properties, and ongoing degradation processes. It often happens that some critical information is not available. The traditional appro ...
Reinforced concrete flat slabs consist of a continuous, thin concrete plate that rests on a grid of columns. The supporting surface of the columns is very small compared to the floor plan dimensions, leading to concentrations of shear forces near the colum ...
A new scintillator based fast -ion loss detector (FILD) system has been designed for the Wendelstein 7-X (W7X) stellarator. The mechanical design of the system is presented here along with engineering analyses of the system. This includes an assessment of ...
This work introduces a new methodology to predict the fatigue life of viscoelastic materials by considering the creep effect on fatigue behavior under the concurrent effects of stress level, stress ratio, and temperature. The model established based on the ...
Bending-active elastica beam is a structural configuration that is based on the elastic deformation of an initially straight beam. This deformation occurs when horizontal displacements are applied to a sliding support, causing the beam to bend into an arch ...
Fiber-polymer composites consist of a polymer matrix and reinforcing fibers made of various materials. These composites exhibit exceptional properties, such as a high strength-to-weight ratio and excellent corrosion resistance, which has led to their incre ...
Codes of practice can be overly conservative, particularly for the shear resistance of reinforced concrete beams with shear reinforcement when large loads act close to supports. This thesis addresses the topic by proposing a refined design approach based o ...
Ultra-high performance fiber reinforced cementitious composite (UHPFRC) is a modern class of cementitious building materials. Because of its superior mechanical properties and durability, it is increasingly used globally to rehabilitate, strengthen and mod ...
Most codes of practice adopt a semi probabilistic design approach for the dimensioning and assessment of structures. Accordingly, structural safety is ensured by performing limit state verifications using design values determined with adequately calibrated ...