Publication

Fully implicit parallel simulation of single neurons

Henry Markram, Felix Schürmann
2008
Journal paper
Abstract

When a multi-compartment neuron is divided into subtrees such that no subtree has more than two connection points to other subtrees, the subtrees can be on different processors and the entire system remains amenable to direct Gaussian elimination with only a modest increase in complexity. Accuracy is the same as with standard Gaussian elimination on a single processor. It is often feasible to divide a 3-D reconstructed neuron model onto a dozen or so processors and experience almost linear speedup. We have also used the method for purposes of load balance in network simulations when some cells are so large that their individual computation time is much longer than the average processor computation time or when there are many more processors than cells. The method is available in the standard distribution of the NEURON simulation program.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.