Silicon based micro-optical collimating element for mid-infrared Quantum Cascade Lasers
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Infrared spectroscopy using semiconductor lasers is a promising technique for trace gas detection. It allows a continuous and real time monitoring of several species, with a high sensitivity and a good selectivity. Among all the possible methods two are pa ...
Spatial representativeness is an important quality criterion in trace gas monitoring, especially if measurements are intended for regulatory and model validation purposes. Open-path absorption spectroscopy techniques meet the representativeness requirement ...
The mid-infrared range is of interest in spectroscopic applications, due to the large number of organic compounds that exhibit characteristic absorption bands in this spectral region. Semiconductor technology, however, has been developed mainly for the nea ...
Single frequency lasing from organic dye solutions on a monolithic poly(dimethylsiloxane) (PDMS) elastomer chip is demonstrated. The laser cavity consists of a single mode liquid core/PDMS cladding channel waveguide and a phase shifted 15th order distribut ...
We introduce a general scheme for calculating from first principles both the transverse-optical and longitudinal-optical infrared absorption spectra at surfaces or interfaces. A spatial decomposition of the spectra gives the evolution of the infrared activ ...
Wavelength tunable emitters and detectors in the mid-IR wavelength region allow applications including thermal imaging and spectroscopy. Such devices may be realized using a resonant cavity. By mechanically changing the cavity length with MEMS mirror techn ...
We report here a new technique for spectroscopic studies of protonated, gas- phase biomolecules and demonstrate its utility by measuring highly-resolved electronic and infrared spectra of peptides of up to 17 amino acids. After UV excitation of an aromatic ...
We present here ultraviolet and infrared spectra of protonated aromatic amino acids in a cold, 22-pole ion trap. Ultraviolet photofragmentation spectra of protonated tyrosine and phenylalanine show vibronically resolved bands corresponding to different sta ...
A photoacoustic multi-gas sensor using tuneable laser diodes in the near-infrared region is reported. An optimized resonant configuration based on an acoustic longitudinal mode is described. Automatic tracking of the acoustic resonance frequency using a pi ...
Photoacoustic spectroscopy is a widely recognised technique to measure trace gases at parts-per-million (ppm) or parts-per-billion (ppb) level using semiconductor laser in the near infrared range. This technique is based on the generation of an acoustic wa ...