Improved electromechanical behavior in castable dielectric elastomer actuators
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The electrostrictive effect, which induces strain in ferroelectric ceramics, offers distinct advantages over its piezoelectric counterpart for high-precision actuator applications, including anhysteretic behavior even at high frequencies, rapid reaction ti ...
The ability to control high-voltage actuator arrays relies, to date, on expensive microelectronic processes or on individual wiring of each actuator to a single off-chip high-voltage switch. Here we present an alternative approach that uses on-chip photoco ...
Dielectric Elastomer Actuators (DEA) are devices designed to convert electric energy into mechanical work. However, the current actuator design will expand when actuated while muscles contract. Fiber reinforcement may allow for anisotropic movement, which ...
Piezoelectrics play a significant role in modern electronics and electric devices. Thermal or mechanical stress on such materials induces a change in polarization generating an electric response, which is the sole effect of why they are so interesting. How ...
Dielectric elastomer actuators (DEAs) are interesting soft actuators compared to other actuation technologies owing to large achievable actuation strains, high energy density and fast actuation. However, because DEAs need to be operated under high electric ...
The speed of change in the modern world is impressive. Within the last 50 years, many devices and technologies have significantly transformed their appearance, intrinsic characteristics and improved their performance. Computers have changed from the size o ...
In the modern age of miniaturisation, Smart Materials, a type of material that reacts mechanically to a certain stimulus, have become an integral part of this revolution. Among these materials, Shape Memory Alloys (SMAs), which have the highest volumetric ...
This article proposes a swirling actuator that uses the electromagnetic radial force and mechanical gears to generate rotational torque. The proposed actuator generates a rotating radial force between an inner stator and a swirler. The gears on the swirler ...
An actuator (22) comprises at least one actuator body (32) of dielectric elastomeric material and two electrodes (34, 36) being attached to opposite surfaces of the actuator body (32), respectively. At least one of the actuator body (32) and at least one o ...
Ferroelectricity has made a huge impact on science and technology since Joseph Valasek (then a Ph.D. student at the University of Minnesota) discovered it in 1920, a little longer than 100 years ago. Whereas Dr. Valasek's original research was motivated by ...