Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We investigate hollow photonic crystal structures consisting in air-slot photonic crystal nanocavities. The high quality factor similar to 2.6x10(4) of such cavities along with a strong overlap between the resonant mode and the hollow core region allows for a strong interaction with an optically active medium in the air slot. This is illustrated in achieving highly sensitive refractive index sensing of a gas infiltrated in the slot. An experimental sensitivity of 610 nm per refractive index unit (RUI) and a detection limit below 1x10(-5) RUI are demonstrated. The device has a remarkably low sensing volume of 40 attoliters, which at atmospheric pressure and room temperature contains as little as 1x10(6) molecules.