Bayesian Denoising Of Generalized Poisson Processes With Finite Rate Of Innovation
Related publications (46)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Consider a stream of status updates generated by a source, where each update is of one of two types: priority or ordinary; these updates are to be transmitted through a network to a monitor. We analyze a transmission policy that treats updates depending on ...
In this work, we consider multitask learning problems where clusters of nodes are interested in estimating their own parameter vector. Cooperation among clusters is beneficial when the optimal models of adjacent clusters have a good number of similar entri ...
Adaptive networks are suitable for decentralized inference tasks. Recent works have intensively studied distributed optimization problems in the case where the nodes have to estimate a single optimum parameter vector collaboratively. However, there are man ...
Institute of Electrical and Electronics Engineers2014
In developing partial least squares calibration models, selecting the number of latent variables used for their construction to minimize both model bias and model variance remains a challenge. Several metrics exist for incorporating these trade-offs, but t ...
Recently, the type of compound regularizers has become a popular choice for signal reconstruction. The estimation quality is generally sensitive to the values of multiple regularization parameters. In this work, based on BDF algorithm, we develop a data-dr ...
In this work, a diffusion-type algorithm is proposed to solve multitask estimation problems where each cluster of nodes is interested in estimating its own optimum parameter vector in a distributed manner. The approach relies on minimizing a global mean-sq ...
We consider continuous-time sparse stochastic processes from which we have only a finite number of noisy/noiseless samples. Our goal is to estimate the noiseless samples (denoising) and the signal in-between (interpolation problem). By relying on tools fro ...
Recent research works on distributed adaptive networks have inten- sively studied the case where the nodes estimate a common parame- ter vector collaboratively. However, there are many applications that are multitask-oriented in the sense that there are mu ...
Consider a stream of status updates generated by a source, where each update is of one of two types: priority or ordinary; these updates are to be transmitted through a network to a monitor. We analyze a transmission policy that treats updates depending on ...
We develop an effective distributed strategy for seeking the Pareto solution of an aggregate cost consisting of regularized risks. The focus is on stochastic optimization problems where each risk function is expressed as the expectation of some loss functi ...