Bayesian Denoising Of Generalized Poisson Processes With Finite Rate Of Innovation
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Consider a stream of status updates generated by a source, where each update is of one of two types: priority or ordinary; these updates are to be transmitted through a network to a monitor. We analyze a transmission policy that treats updates depending on ...
We develop an effective distributed strategy for seeking the Pareto solution of an aggregate cost consisting of regularized risks. The focus is on stochastic optimization problems where each risk function is expressed as the expectation of some loss functi ...
Consider a stream of status updates generated by a source, where each update is of one of two types: priority or ordinary; these updates are to be transmitted through a network to a monitor. We analyze a transmission policy that treats updates depending on ...
Recently, the type of compound regularizers has become a popular choice for signal reconstruction. The estimation quality is generally sensitive to the values of multiple regularization parameters. In this work, based on BDF algorithm, we develop a data-dr ...
In developing partial least squares calibration models, selecting the number of latent variables used for their construction to minimize both model bias and model variance remains a challenge. Several metrics exist for incorporating these trade-offs, but t ...
In this work, a diffusion-type algorithm is proposed to solve multitask estimation problems where each cluster of nodes is interested in estimating its own optimum parameter vector in a distributed manner. The approach relies on minimizing a global mean-sq ...
We consider continuous-time sparse stochastic processes from which we have only a finite number of noisy/noiseless samples. Our goal is to estimate the noiseless samples (denoising) and the signal in-between (interpolation problem). By relying on tools fro ...
In this work, we consider multitask learning problems where clusters of nodes are interested in estimating their own parameter vector. Cooperation among clusters is beneficial when the optimal models of adjacent clusters have a good number of similar entri ...
Recent research works on distributed adaptive networks have inten- sively studied the case where the nodes estimate a common parame- ter vector collaboratively. However, there are many applications that are multitask-oriented in the sense that there are mu ...
Adaptive networks are suitable for decentralized inference tasks. Recent works have intensively studied distributed optimization problems in the case where the nodes have to estimate a single optimum parameter vector collaboratively. However, there are man ...
Institute of Electrical and Electronics Engineers2014